Design of Fast Radio Burst Signal Recognition System based on Deep Learning

Haoran Yuan, Chungao Shi, Hongliang Sun, Hongfeng Wang
{"title":"Design of Fast Radio Burst Signal Recognition System based on Deep Learning","authors":"Haoran Yuan, Chungao Shi, Hongliang Sun, Hongfeng Wang","doi":"10.54691/y8hbe351","DOIUrl":null,"url":null,"abstract":"In order to identify fast radio burst signals from the original observation data of FAST radio telescopes, this paper designs a fast radio burst signal recognition system based on deep learning object detection algorithm. The system uses the incoherent achromatization algorithm and the YOLO series target recognition algorithm to realize the recognition of fast radio burst signals, and provides users with a friendly graphical system interface. In view of the different performance of users' computers, the system has the function of selecting different algorithm models. Experiments have proved that the system achieves 86% recall and 83% accuracy in the FRB20201124A real-world data test set.","PeriodicalId":336556,"journal":{"name":"Scientific Journal of Technology","volume":"83 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Journal of Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54691/y8hbe351","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In order to identify fast radio burst signals from the original observation data of FAST radio telescopes, this paper designs a fast radio burst signal recognition system based on deep learning object detection algorithm. The system uses the incoherent achromatization algorithm and the YOLO series target recognition algorithm to realize the recognition of fast radio burst signals, and provides users with a friendly graphical system interface. In view of the different performance of users' computers, the system has the function of selecting different algorithm models. Experiments have proved that the system achieves 86% recall and 83% accuracy in the FRB20201124A real-world data test set.
基于深度学习的快速无线电突发信号识别系统设计
为了从FAST射电望远镜的原始观测数据中识别快速射电暴信号,本文设计了一种基于深度学习目标检测算法的快速射电暴信号识别系统。系统采用非相干消色差算法和YOLO系列目标识别算法实现对快速射电暴信号的识别,并为用户提供友好的图形化系统界面。针对用户计算机的不同性能,系统具有选择不同算法模型的功能。实验证明,该系统在 FRB20201124A 真实数据测试集上的召回率达到了 86%,准确率达到了 83%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信