{"title":"A particle-level discrete element model for simulating the performance of MRFs","authors":"Keshun Qi, Nie Meng, Jinhuan Xu, Meixuan Wang","doi":"10.1177/1045389x241252294","DOIUrl":null,"url":null,"abstract":"The particle dynamics model of MRFs (MRFs) is based on the discrete element technique, which takes into account essential MRF variables such as magnetic field, particle parameters, particle volume fraction, carrier fluid properties, and other parameters. Firstly, to digitally characterize the microstructure of MRFs, the particle coordination number, as a new perspective is creatively proposed. The validity and predictability of the created model are then tested in conjunction with the rheological performance studies by comparing it to the known continuous medium model. Finally, based on the proposed model, the influence of each influencing factor on the magnetorheological effect is simulated and regularity analysis is given from the perspective of particles. Linking macroscopic qualities and MRF microstructure, which offers a theoretical basis for the preparation of MRFs with improved performance and prediction of performance under various working situations.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"107 16","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/1045389x241252294","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
The particle dynamics model of MRFs (MRFs) is based on the discrete element technique, which takes into account essential MRF variables such as magnetic field, particle parameters, particle volume fraction, carrier fluid properties, and other parameters. Firstly, to digitally characterize the microstructure of MRFs, the particle coordination number, as a new perspective is creatively proposed. The validity and predictability of the created model are then tested in conjunction with the rheological performance studies by comparing it to the known continuous medium model. Finally, based on the proposed model, the influence of each influencing factor on the magnetorheological effect is simulated and regularity analysis is given from the perspective of particles. Linking macroscopic qualities and MRF microstructure, which offers a theoretical basis for the preparation of MRFs with improved performance and prediction of performance under various working situations.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.