Alonso Arias, Nicolás Núñez, Pedro Rau, Patrick Venail
{"title":"Development of a spatial projection map of glacial retreat based on vulnerability maps in the Central Cordillera, Peru","authors":"Alonso Arias, Nicolás Núñez, Pedro Rau, Patrick Venail","doi":"10.2166/wcc.2024.151","DOIUrl":null,"url":null,"abstract":"\n \n Increase in average global temperature over the last few decades has caused an accelerated retreat of tropical glaciers. Andean populations live in strict dependence on the water services provided by mountains and glaciers. The present study aims to generate a glacier melt projection map in the Peruvian Central Cordillera based on vulnerability maps over the 1990–2021 period. Seven satellite images were selected to determine the changes in glacier coverage based on normalized indexes. Subsequently, seven parametric maps consisting of terrain and climate characteristics were assimilated into a vulnerability analysis based on the frequency index and the Shannon entropy index model, allowing one to identify areas most susceptible to glacial retreat. The results show that the most important criteria for the southern and northern glacial study areas are surface temperature, elevation, precipitation, aspect, orientation, and slope. The validation results revealed the most accurate set of parameters from the vulnerability map in terms of projecting melting areas and were used to produce a spatial projection map for the period 2021–2055. From 2021, a glacier loss in the range of 84–98% would be reached by 2050s.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"117 42","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.2166/wcc.2024.151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Increase in average global temperature over the last few decades has caused an accelerated retreat of tropical glaciers. Andean populations live in strict dependence on the water services provided by mountains and glaciers. The present study aims to generate a glacier melt projection map in the Peruvian Central Cordillera based on vulnerability maps over the 1990–2021 period. Seven satellite images were selected to determine the changes in glacier coverage based on normalized indexes. Subsequently, seven parametric maps consisting of terrain and climate characteristics were assimilated into a vulnerability analysis based on the frequency index and the Shannon entropy index model, allowing one to identify areas most susceptible to glacial retreat. The results show that the most important criteria for the southern and northern glacial study areas are surface temperature, elevation, precipitation, aspect, orientation, and slope. The validation results revealed the most accurate set of parameters from the vulnerability map in terms of projecting melting areas and were used to produce a spatial projection map for the period 2021–2055. From 2021, a glacier loss in the range of 84–98% would be reached by 2050s.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.