J. Bobok, Jernej Činč, Piotr Oprocha, Serge Troubetzkoy
{"title":"Are generic dynamical properties stable under composition with rotations?","authors":"J. Bobok, Jernej Činč, Piotr Oprocha, Serge Troubetzkoy","doi":"10.1090/proc/16800","DOIUrl":null,"url":null,"abstract":"In this paper we provide a detailed topological and measure-theoretic study of Lebesgue measure-preserving continuous circle maps that are composed with independent rotations on each of the sides. In particular, we analyze the stability of the locally eventually onto and measure-theoretic mixing properties.","PeriodicalId":20696,"journal":{"name":"Proceedings of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/proc/16800","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper we provide a detailed topological and measure-theoretic study of Lebesgue measure-preserving continuous circle maps that are composed with independent rotations on each of the sides. In particular, we analyze the stability of the locally eventually onto and measure-theoretic mixing properties.
期刊介绍:
All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are.
This journal is devoted to shorter research articles (not to exceed 15 printed pages) in all areas of pure and applied mathematics. To be published in the Proceedings, a paper must be correct, new, and significant. Further, it must be well written and of interest to a substantial number of mathematicians. Piecemeal results, such as an inconclusive step toward an unproved major theorem or a minor variation on a known result, are in general not acceptable for publication. Longer papers may be submitted to the Transactions of the American Mathematical Society. Published pages are the same size as those generated in the style files provided for AMS-LaTeX.