H. Al-Yousef, B. M. Alotaibi, A. Atta, E. Abdeltwab, M. M. Abdelhamied
{"title":"Fabrication, surface characterization and effect of oxygen irradiation on polymeric nanocomposite films","authors":"H. Al-Yousef, B. M. Alotaibi, A. Atta, E. Abdeltwab, M. M. Abdelhamied","doi":"10.1142/s0217979225500572","DOIUrl":null,"url":null,"abstract":"This study addressed the preparation of nanocomposites consisting of polyvinyl alcohol (PVA) and titanium oxide (TiO2) for utilization in optoelectronics technologies. PVA/10%TiO2 nanocomposite samples with a mean thickness of 0.1[Formula: see text]mm were created using the solution casting method. The PVA/TiO2 films are irradiated with oxygen fluences of [Formula: see text], [Formula: see text] and [Formula: see text] ions/cm2. The X-ray diffraction (XRD) and FTIR methodologies were employed to investigate the impact of ion bombardment on the structural characteristics and functional groups of PVA/TiO2 substrates. Diffraction peaks are 20.1° for PVA and 25.4° for TiO2, indicating the successful PVA/TiO2 nanocomposite construction. The absorbance (A) of unirradiated and irradiated samples was measured using UV–Vis spectroscopy within a wavelength range of 200–1100[Formula: see text]nm. Band gaps ([Formula: see text]) were calculated using Tauc’s formula for PVA/TiO2 films, exhibiting a decrease from 4.56[Formula: see text]eV for unirradiated PVA/TiO2 film to 4.16, 3.95 and 3.88[Formula: see text]eV at ion fluences of [Formula: see text], [Formula: see text] and [Formula: see text] ions/cm2, respectively. Furthermore, the Ubrach tail has a rise of 1.23[Formula: see text]eV for unirradiated PVA/TiO2 to 1.28[Formula: see text]eV, 1.4[Formula: see text]eV and 1.77[Formula: see text]eV for irradiated films with ion fluences of [Formula: see text], [Formula: see text] and [Formula: see text] ions/cm2, respectively. Additionally, following ion irradiation, the PVA/TiO2 absorption edge [Formula: see text], which was 3.56[Formula: see text]eV, decreased to 3.48, 3.37 and 3.23[Formula: see text]eV, with increasing ion beam fluences. This study demonstrated that the optical behaviors of the PVA/TiO2 films were altered under bombardment, suggesting their potential applicability in optical devices.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"131 47","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s0217979225500572","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
This study addressed the preparation of nanocomposites consisting of polyvinyl alcohol (PVA) and titanium oxide (TiO2) for utilization in optoelectronics technologies. PVA/10%TiO2 nanocomposite samples with a mean thickness of 0.1[Formula: see text]mm were created using the solution casting method. The PVA/TiO2 films are irradiated with oxygen fluences of [Formula: see text], [Formula: see text] and [Formula: see text] ions/cm2. The X-ray diffraction (XRD) and FTIR methodologies were employed to investigate the impact of ion bombardment on the structural characteristics and functional groups of PVA/TiO2 substrates. Diffraction peaks are 20.1° for PVA and 25.4° for TiO2, indicating the successful PVA/TiO2 nanocomposite construction. The absorbance (A) of unirradiated and irradiated samples was measured using UV–Vis spectroscopy within a wavelength range of 200–1100[Formula: see text]nm. Band gaps ([Formula: see text]) were calculated using Tauc’s formula for PVA/TiO2 films, exhibiting a decrease from 4.56[Formula: see text]eV for unirradiated PVA/TiO2 film to 4.16, 3.95 and 3.88[Formula: see text]eV at ion fluences of [Formula: see text], [Formula: see text] and [Formula: see text] ions/cm2, respectively. Furthermore, the Ubrach tail has a rise of 1.23[Formula: see text]eV for unirradiated PVA/TiO2 to 1.28[Formula: see text]eV, 1.4[Formula: see text]eV and 1.77[Formula: see text]eV for irradiated films with ion fluences of [Formula: see text], [Formula: see text] and [Formula: see text] ions/cm2, respectively. Additionally, following ion irradiation, the PVA/TiO2 absorption edge [Formula: see text], which was 3.56[Formula: see text]eV, decreased to 3.48, 3.37 and 3.23[Formula: see text]eV, with increasing ion beam fluences. This study demonstrated that the optical behaviors of the PVA/TiO2 films were altered under bombardment, suggesting their potential applicability in optical devices.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.