Emre Saldiran, M. Hasanzade, Gokhan Inalhan, Antonios Tsourdos
{"title":"Towards Global Explainability of Artificial Intelligence Agent Tactics in Close Air Combat","authors":"Emre Saldiran, M. Hasanzade, Gokhan Inalhan, Antonios Tsourdos","doi":"10.3390/aerospace11060415","DOIUrl":null,"url":null,"abstract":"In this paper, we explore the development of an explainability system for air combat agents trained with reinforcement learning, thus addressing a crucial need in the dynamic and complex realm of air combat. The safety-critical nature of air combat demands not only improved performance but also a deep understanding of artificial intelligence (AI) decision-making processes. Although AI has been applied significantly to air combat, a gap remains in comprehensively explaining an AI agent’s decisions, which is essential for their effective integration and for fostering trust in their actions. Our research involves the creation of an explainability system tailored for agents trained in an air combat environment. Using reinforcement learning, combined with a reward decomposition approach, the system clarifies the agent’s decision making in various tactical situations. This transparency allows for a nuanced understanding of the agent’s behavior, thereby uncovering their strategic preferences and operational patterns. The findings reveal that our system effectively identifies the strengths and weaknesses of an agent’s tactics in different air combat scenarios. This knowledge is essential for debugging and refining the agent’s performance and to ensure that AI agents operate optimally within their intended contexts. The insights gained from our study highlight the crucial role of explainability in improving the integration of AI technologies within air combat systems, thus facilitating more informed tactical decisions and potential advancements in air combat strategies.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"12 11","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/aerospace11060415","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we explore the development of an explainability system for air combat agents trained with reinforcement learning, thus addressing a crucial need in the dynamic and complex realm of air combat. The safety-critical nature of air combat demands not only improved performance but also a deep understanding of artificial intelligence (AI) decision-making processes. Although AI has been applied significantly to air combat, a gap remains in comprehensively explaining an AI agent’s decisions, which is essential for their effective integration and for fostering trust in their actions. Our research involves the creation of an explainability system tailored for agents trained in an air combat environment. Using reinforcement learning, combined with a reward decomposition approach, the system clarifies the agent’s decision making in various tactical situations. This transparency allows for a nuanced understanding of the agent’s behavior, thereby uncovering their strategic preferences and operational patterns. The findings reveal that our system effectively identifies the strengths and weaknesses of an agent’s tactics in different air combat scenarios. This knowledge is essential for debugging and refining the agent’s performance and to ensure that AI agents operate optimally within their intended contexts. The insights gained from our study highlight the crucial role of explainability in improving the integration of AI technologies within air combat systems, thus facilitating more informed tactical decisions and potential advancements in air combat strategies.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.