Denny John, Bryer C. Sousa, Tanaji Paul, Sohail M. A. K Mohammed, Danielle L. Cote, Arvind Agarwal
{"title":"Devitrification-Induced Tailoring of Microstructure and Strength in Aluminum High-Entropy Alloy Powder for Cold Spray Deposition","authors":"Denny John, Bryer C. Sousa, Tanaji Paul, Sohail M. A. K Mohammed, Danielle L. Cote, Arvind Agarwal","doi":"10.1007/s11666-024-01787-3","DOIUrl":null,"url":null,"abstract":"<div><p>The development of high-strength cold spray deposits using amorphous/nanocrystalline aluminum high-entropy alloy (Al HEA) powder is hindered by the lack of understanding of correlations between powder microstructure and its deformation behavior. In this study, gas-atomized Al HEA powder (Al<sub>90.05</sub>-Y<sub>4.4</sub>-Ni<sub>4.3</sub>-Co<sub>0.9</sub>-Sc<sub>0.35</sub> at.%) is devitrified at 298, 345, 362, and 450 °C to optimize strength and deformation for cold spraying. Devitrification-induced atomic rearrangement developed equiaxed Al grains and Al<sub>3</sub>Ni and Al<sub>3</sub>Sc precipitates. The amorphous content, growth of grains, hard precipitates, and reduced dislocation density increased the hardness by 16% to 515 HV at 298 °C and decreased the hardness by 55% to 190 HV at 450 °C. The compressive strength of Al HEA powder increased by 5% to 1559 MPa at 298 °C and decreased by 49% to 760 MPa at 450 °C. To enhance the limited sprayability of Al HEA powder, compressive strength is used to model optimized cold spray process maps. Helium gas with temperatures from 300 to 800 °C and a pressure of 40 bar can produce cold spray deposits with deposition efficiency greater than 70%. The scientific insights acquired from the present study provide a gateway toward developing novel lightweight and high-strength aluminum alloy deposits, thus marking an advancement in cold spray technology.</p></div>","PeriodicalId":679,"journal":{"name":"Journal of Thermal Spray Technology","volume":"33 5","pages":"1348 - 1364"},"PeriodicalIF":3.2000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Spray Technology","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11666-024-01787-3","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0
Abstract
The development of high-strength cold spray deposits using amorphous/nanocrystalline aluminum high-entropy alloy (Al HEA) powder is hindered by the lack of understanding of correlations between powder microstructure and its deformation behavior. In this study, gas-atomized Al HEA powder (Al90.05-Y4.4-Ni4.3-Co0.9-Sc0.35 at.%) is devitrified at 298, 345, 362, and 450 °C to optimize strength and deformation for cold spraying. Devitrification-induced atomic rearrangement developed equiaxed Al grains and Al3Ni and Al3Sc precipitates. The amorphous content, growth of grains, hard precipitates, and reduced dislocation density increased the hardness by 16% to 515 HV at 298 °C and decreased the hardness by 55% to 190 HV at 450 °C. The compressive strength of Al HEA powder increased by 5% to 1559 MPa at 298 °C and decreased by 49% to 760 MPa at 450 °C. To enhance the limited sprayability of Al HEA powder, compressive strength is used to model optimized cold spray process maps. Helium gas with temperatures from 300 to 800 °C and a pressure of 40 bar can produce cold spray deposits with deposition efficiency greater than 70%. The scientific insights acquired from the present study provide a gateway toward developing novel lightweight and high-strength aluminum alloy deposits, thus marking an advancement in cold spray technology.
期刊介绍:
From the scientific to the practical, stay on top of advances in this fast-growing coating technology with ASM International''s Journal of Thermal Spray Technology. Critically reviewed scientific papers and engineering articles combine the best of new research with the latest applications and problem solving.
A service of the ASM Thermal Spray Society (TSS), the Journal of Thermal Spray Technology covers all fundamental and practical aspects of thermal spray science, including processes, feedstock manufacture, and testing and characterization.
The journal contains worldwide coverage of the latest research, products, equipment and process developments, and includes technical note case studies from real-time applications and in-depth topical reviews.