{"title":"Molecular Dynamics Analysis of Adhesive Forces between Silicon Wafer and Substrate in Microarray Adhesion","authors":"Shunkai Han, Yarong Chen, Ming Feng, Zhixu Zhang, Zhaopei Wang, Zhixiang Chen","doi":"10.3390/lubricants12060183","DOIUrl":null,"url":null,"abstract":"With the development of the electronics industry, the requirements for chips are getting higher and higher, and thinner and thinner wafers are needed to meet the processing of chips. In this study, a model of the adhesion state of semiconductor wafers in the stacking–clamping process based on microarray adsorption was established, the composition adhesion was discussed, the microarrays of different materials and pressures were experimentally studied, and a molecular dynamics model was established. The molecular dynamics analysis showed that the adhesion force was only related to the type of atom, and the applied pressure did not change the adhesion force. According to the simulation results, the tangential adhesion between the metal and the wafer is greater than that between the ceramic and the wafer, the adsorption force between the aluminum–magnesium alloy and the silicon wafer is shown in the normal direction, and the repulsion force between other materials and the silicon wafer is shown in the normal direction. During the pressure process, the metal is in the elastic deformation stage between the metal and the wafer, the wafer is plastically deformed in the silicon carbide ceramic and wafer, and the wafer is elastically deformed in the alumina ceramic and wafer. In this paper, the adhesion between the substrate and the wafer is studied, a method of constructing microarrays to enhance adhesion is proposed, and the tangential deformation of the array unit under pressure is studied, which provides theoretical support for increasing the adhesion by constructing microarrays.","PeriodicalId":18135,"journal":{"name":"Lubricants","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lubricants","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/lubricants12060183","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
With the development of the electronics industry, the requirements for chips are getting higher and higher, and thinner and thinner wafers are needed to meet the processing of chips. In this study, a model of the adhesion state of semiconductor wafers in the stacking–clamping process based on microarray adsorption was established, the composition adhesion was discussed, the microarrays of different materials and pressures were experimentally studied, and a molecular dynamics model was established. The molecular dynamics analysis showed that the adhesion force was only related to the type of atom, and the applied pressure did not change the adhesion force. According to the simulation results, the tangential adhesion between the metal and the wafer is greater than that between the ceramic and the wafer, the adsorption force between the aluminum–magnesium alloy and the silicon wafer is shown in the normal direction, and the repulsion force between other materials and the silicon wafer is shown in the normal direction. During the pressure process, the metal is in the elastic deformation stage between the metal and the wafer, the wafer is plastically deformed in the silicon carbide ceramic and wafer, and the wafer is elastically deformed in the alumina ceramic and wafer. In this paper, the adhesion between the substrate and the wafer is studied, a method of constructing microarrays to enhance adhesion is proposed, and the tangential deformation of the array unit under pressure is studied, which provides theoretical support for increasing the adhesion by constructing microarrays.
期刊介绍:
This journal is dedicated to the field of Tribology and closely related disciplines. This includes the fundamentals of the following topics: -Lubrication, comprising hydrostatics, hydrodynamics, elastohydrodynamics, mixed and boundary regimes of lubrication -Friction, comprising viscous shear, Newtonian and non-Newtonian traction, boundary friction -Wear, including adhesion, abrasion, tribo-corrosion, scuffing and scoring -Cavitation and erosion -Sub-surface stressing, fatigue spalling, pitting, micro-pitting -Contact Mechanics: elasticity, elasto-plasticity, adhesion, viscoelasticity, poroelasticity, coatings and solid lubricants, layered bonded and unbonded solids -Surface Science: topography, tribo-film formation, lubricant–surface combination, surface texturing, micro-hydrodynamics, micro-elastohydrodynamics -Rheology: Newtonian, non-Newtonian fluids, dilatants, pseudo-plastics, thixotropy, shear thinning -Physical chemistry of lubricants, boundary active species, adsorption, bonding