{"title":"Surface Temperature Experienced and Irrigation Effects on Artificial Turf","authors":"P. Vyrlas, Miltiadis Koutras, Vasileios Liakos","doi":"10.37394/232015.2024.20.20","DOIUrl":null,"url":null,"abstract":"Artificial turf has gained widespread use in sporting fields as it is considered a water-saving and maintenance-free alternative to natural turfgrass. However, the high surface temperatures that occur during the day are a potentially important unfavorable feature of artificial turfgrass. The objective of this study was to establish the temperatures experienced on an artificial turf surface and to evaluate the effect of irrigation on artificial turf surface temperature. Data was collected over five surfaces across a sports facility on the campus of the University of Thessaly in Larissa, Greece. Results showed surface temperatures on artificial turf (AT) as significantly higher than running track (RT), asphalt (AS), bare soil (BS), and natural grass (NG), with maximum surface temperatures of 72oC. Solar radiation accounted for most of the variation in surface temperature of the artificial turf (r2=0.92) as opposed to air temperature (r2=0.38), and relative humidity (r2=0.50). To lower surface temperature, four irrigation regimes were used (1x60 min, 1x30 min, 2x15 min, and 3x5 min water application). Irrigation reduced the surface temperature by as much as 30°C compared to the unirrigated surface, but these low temperatures were maintained for 90 to 120 minutes long. The most effective cooling effect occurred when water was applied in a 3-cycle, 5-minute duration, where the irrigated surface temperature remained below the unirrigated surface throughout the time after the first watering.","PeriodicalId":53713,"journal":{"name":"WSEAS Transactions on Environment and Development","volume":"55 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"WSEAS Transactions on Environment and Development","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37394/232015.2024.20.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
Artificial turf has gained widespread use in sporting fields as it is considered a water-saving and maintenance-free alternative to natural turfgrass. However, the high surface temperatures that occur during the day are a potentially important unfavorable feature of artificial turfgrass. The objective of this study was to establish the temperatures experienced on an artificial turf surface and to evaluate the effect of irrigation on artificial turf surface temperature. Data was collected over five surfaces across a sports facility on the campus of the University of Thessaly in Larissa, Greece. Results showed surface temperatures on artificial turf (AT) as significantly higher than running track (RT), asphalt (AS), bare soil (BS), and natural grass (NG), with maximum surface temperatures of 72oC. Solar radiation accounted for most of the variation in surface temperature of the artificial turf (r2=0.92) as opposed to air temperature (r2=0.38), and relative humidity (r2=0.50). To lower surface temperature, four irrigation regimes were used (1x60 min, 1x30 min, 2x15 min, and 3x5 min water application). Irrigation reduced the surface temperature by as much as 30°C compared to the unirrigated surface, but these low temperatures were maintained for 90 to 120 minutes long. The most effective cooling effect occurred when water was applied in a 3-cycle, 5-minute duration, where the irrigated surface temperature remained below the unirrigated surface throughout the time after the first watering.
期刊介绍:
WSEAS Transactions on Environment and Development publishes original research papers relating to the studying of environmental sciences. We aim to bring important work to a wide international audience and therefore only publish papers of exceptional scientific value that advance our understanding of these particular areas. The research presented must transcend the limits of case studies, while both experimental and theoretical studies are accepted. It is a multi-disciplinary journal and therefore its content mirrors the diverse interests and approaches of scholars involved with sustainable development, climate change, natural hazards, renewable energy systems and related areas. We also welcome scholarly contributions from officials with government agencies, international agencies, and non-governmental organizations.