Wenhuan Zhao, Peng Wang, Yingwei Zhu, Yue Zhang, Shuai Yang, Yan Liu, Yang Shi, Chaofan Yu
{"title":"Experiment of electrothermal stress for different types of end turn grading in the inverter-fed form-wound windings","authors":"Wenhuan Zhao, Peng Wang, Yingwei Zhu, Yue Zhang, Shuai Yang, Yan Liu, Yang Shi, Chaofan Yu","doi":"10.1049/hve2.12449","DOIUrl":null,"url":null,"abstract":"<p>End turn grading with resistive–capacitive coupling experiences severe electrothermal stress when subjected to pulse width modulation (PWM) voltage. In this paper, several experiments and simulations were carried conducted for four types of end turn grading. First of all, the temperature rise in the end turn grading increased with a decrease in rise time. When the rise time was less than 500 ns, the temperature rise at the terminal was higher owing to the increased capacitive current coupled from the main wall insulation. Further, the current in the linear region exhibited minimal variation at different fundamental frequencies resulting in synchronized the temperature rise at the terminal and overlap. Furthermore, the jump voltage was the key factor influencing temperature rise in end turn grading, confirmed by comparing different voltage magnitudes. Finally, the transient behaviour of the maximum field in the stress grading material was determined at rise time. The experimental and simulation results indicate that balancing and interdependently addressing the electrical and thermal stress protection in end turn grading is crucial. The study aims to provide an experimental and theoretical foundation for an insulation system of inverter-fed rotating machinery operating under PWM voltage.</p>","PeriodicalId":48649,"journal":{"name":"High Voltage","volume":"9 4","pages":"853-861"},"PeriodicalIF":4.4000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/hve2.12449","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Voltage","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/hve2.12449","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
End turn grading with resistive–capacitive coupling experiences severe electrothermal stress when subjected to pulse width modulation (PWM) voltage. In this paper, several experiments and simulations were carried conducted for four types of end turn grading. First of all, the temperature rise in the end turn grading increased with a decrease in rise time. When the rise time was less than 500 ns, the temperature rise at the terminal was higher owing to the increased capacitive current coupled from the main wall insulation. Further, the current in the linear region exhibited minimal variation at different fundamental frequencies resulting in synchronized the temperature rise at the terminal and overlap. Furthermore, the jump voltage was the key factor influencing temperature rise in end turn grading, confirmed by comparing different voltage magnitudes. Finally, the transient behaviour of the maximum field in the stress grading material was determined at rise time. The experimental and simulation results indicate that balancing and interdependently addressing the electrical and thermal stress protection in end turn grading is crucial. The study aims to provide an experimental and theoretical foundation for an insulation system of inverter-fed rotating machinery operating under PWM voltage.
High VoltageEnergy-Energy Engineering and Power Technology
CiteScore
9.60
自引率
27.30%
发文量
97
审稿时长
21 weeks
期刊介绍:
High Voltage aims to attract original research papers and review articles. The scope covers high-voltage power engineering and high voltage applications, including experimental, computational (including simulation and modelling) and theoretical studies, which include:
Electrical Insulation
● Outdoor, indoor, solid, liquid and gas insulation
● Transient voltages and overvoltage protection
● Nano-dielectrics and new insulation materials
● Condition monitoring and maintenance
Discharge and plasmas, pulsed power
● Electrical discharge, plasma generation and applications
● Interactions of plasma with surfaces
● Pulsed power science and technology
High-field effects
● Computation, measurements of Intensive Electromagnetic Field
● Electromagnetic compatibility
● Biomedical effects
● Environmental effects and protection
High Voltage Engineering
● Design problems, testing and measuring techniques
● Equipment development and asset management
● Smart Grid, live line working
● AC/DC power electronics
● UHV power transmission
Special Issues. Call for papers:
Interface Charging Phenomena for Dielectric Materials - https://digital-library.theiet.org/files/HVE_CFP_ICP.pdf
Emerging Materials For High Voltage Applications - https://digital-library.theiet.org/files/HVE_CFP_EMHVA.pdf