Yongxiang Caio, Qing Chen, Yang Wang, Wie Li, Jiakuan Ren, Yangquan Qu
{"title":"Forecasting method of electric vehicle charging load based on virtual prediction parameter estimation strategy","authors":"Yongxiang Caio, Qing Chen, Yang Wang, Wie Li, Jiakuan Ren, Yangquan Qu","doi":"10.24425/aee.2024.149921","DOIUrl":null,"url":null,"abstract":"In order to deal with the threat of the randomness of large-scale electric vehicle (EV) loads to the safe and economic operation of the distribution network effectively, a forecasting method of EV loads based upon virtual prediction parameter estimation strategy is proposed. Firstly, an in-depth analysis is conducted to thoroughly examine the applicability and target audience of various existing power user load forecasting methods. This initial phase provided a solid foundation for the introduction of the new methods. Secondly, utilizing the Monte Carlo simulation method, a charging load forecasting approach that considers both spatial and temporal distribution is developed. This method effectively captures the diversity of EV charging behaviors by leveraging virtual parameter estimation, integrating insights from historical data into future load predictions, thereby enhancing forecasting accuracy. Finally, to validate the effectiveness of this groundbreaking approach, comprehensive testing was conducted on the MATLAB R2017a simulation platform. This verification phase not only serves to demonstrate the method’s accuracy, but also underscores its practicality and reliability in real-world applications.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24425/aee.2024.149921","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In order to deal with the threat of the randomness of large-scale electric vehicle (EV) loads to the safe and economic operation of the distribution network effectively, a forecasting method of EV loads based upon virtual prediction parameter estimation strategy is proposed. Firstly, an in-depth analysis is conducted to thoroughly examine the applicability and target audience of various existing power user load forecasting methods. This initial phase provided a solid foundation for the introduction of the new methods. Secondly, utilizing the Monte Carlo simulation method, a charging load forecasting approach that considers both spatial and temporal distribution is developed. This method effectively captures the diversity of EV charging behaviors by leveraging virtual parameter estimation, integrating insights from historical data into future load predictions, thereby enhancing forecasting accuracy. Finally, to validate the effectiveness of this groundbreaking approach, comprehensive testing was conducted on the MATLAB R2017a simulation platform. This verification phase not only serves to demonstrate the method’s accuracy, but also underscores its practicality and reliability in real-world applications.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.