Vuong Pham Hoang, P. Huu, S. Shirguppikar, Toan Nguyen Duc
{"title":"Enhancing EDM performance with multi-objective decision-making using copper-coated aluminum electrodes and TOPSIS methodology for Ti-6Al-4V machining","authors":"Vuong Pham Hoang, P. Huu, S. Shirguppikar, Toan Nguyen Duc","doi":"10.1142/s0217979225400235","DOIUrl":null,"url":null,"abstract":"The exploration of Electrical Discharge Machining (EDM) with coated electrodes represents a relatively novel research avenue, thereby yielding limited published research outcomes. The choice of coating material plays a pivotal role in the EDM machining process, and alterations in coating materials can directly influence the adjustment of technological parameters in EDM. Consequently, research dedicated to optimizing these technological parameters for EDM employing coated electrodes is of paramount importance, and it promises to advance the practical implementation of this cutting-edge technique. In this study, we systematically investigate the technological parameters for EDM employing a copper-coated aluminum electrode in the context of Ti-6Al-4V machining. Our research outcomes are framed within a multi-objective optimization paradigm, with a focus on Material Removal Rate (MRR) and Surface Roughness (SR) as vital quality indicators. To address the intricate multi-objective optimization challenge, we have harnessed the combined power of the Taguchi methodology and the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS). The amalgamation of these techniques enables us to navigate the complexities of EDM parameter optimization effectively. Our findings reveal that the most favorable process parameters entail a configuration of [Formula: see text][Formula: see text]V, [Formula: see text] A, [Formula: see text][Formula: see text][Formula: see text]s, resulting in an MRR of 0.028[Formula: see text]mg/min and an SR of 7.56[Formula: see text][Formula: see text]m. These optimized parameters exemplify a substantial enhancement in machining efficiency and surface quality when utilizing coated electrodes. Moreover, our study scrutinizes the quality of the machined surface under optimal conditions with coated electrodes. We employ the TOPSIS method as a proficient solution for this endeavor, offering a straightforward approach to this intricate calculation process.","PeriodicalId":14108,"journal":{"name":"International Journal of Modern Physics B","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Modern Physics B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s0217979225400235","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The exploration of Electrical Discharge Machining (EDM) with coated electrodes represents a relatively novel research avenue, thereby yielding limited published research outcomes. The choice of coating material plays a pivotal role in the EDM machining process, and alterations in coating materials can directly influence the adjustment of technological parameters in EDM. Consequently, research dedicated to optimizing these technological parameters for EDM employing coated electrodes is of paramount importance, and it promises to advance the practical implementation of this cutting-edge technique. In this study, we systematically investigate the technological parameters for EDM employing a copper-coated aluminum electrode in the context of Ti-6Al-4V machining. Our research outcomes are framed within a multi-objective optimization paradigm, with a focus on Material Removal Rate (MRR) and Surface Roughness (SR) as vital quality indicators. To address the intricate multi-objective optimization challenge, we have harnessed the combined power of the Taguchi methodology and the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS). The amalgamation of these techniques enables us to navigate the complexities of EDM parameter optimization effectively. Our findings reveal that the most favorable process parameters entail a configuration of [Formula: see text][Formula: see text]V, [Formula: see text] A, [Formula: see text][Formula: see text][Formula: see text]s, resulting in an MRR of 0.028[Formula: see text]mg/min and an SR of 7.56[Formula: see text][Formula: see text]m. These optimized parameters exemplify a substantial enhancement in machining efficiency and surface quality when utilizing coated electrodes. Moreover, our study scrutinizes the quality of the machined surface under optimal conditions with coated electrodes. We employ the TOPSIS method as a proficient solution for this endeavor, offering a straightforward approach to this intricate calculation process.
期刊介绍:
Launched in 1987, the International Journal of Modern Physics B covers the most important aspects and the latest developments in Condensed Matter Physics, Statistical Physics, as well as Atomic, Molecular and Optical Physics. A strong emphasis is placed on topics of current interest, such as cold atoms and molecules, new topological materials and phases, and novel low dimensional materials. One unique feature of this journal is its review section which contains articles with permanent research value besides the state-of-the-art research work in the relevant subject areas.