{"title":"Indoor particulate matter exposure and correlation of PM2.5 with lung efficacy and SpO2 level of Dhaka City Dwellers","authors":"Samiha Nahian, Shatabdi Roy, Tasrina Rabia Choudhury, Bilkis Ara Begum, Abdus Salam","doi":"10.1007/s11869-024-01586-3","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigated indoor exposure of particulate matter (PM) at six residential homes in Dhaka, Bangladesh, to assess the degradation of indoor air quality (IAQ) by PM<sub>1.0</sub>, PM<sub>2.5</sub> and PM<sub>10</sub>, as well as correlate indoor PM<sub>2.5</sub> with occupants’ lung efficacy and blood oxygen saturation (SpO<sub>2</sub>). Concentrations of indoor and outdoor PM were monitored individually at day and night using IGERESS Air Quality Monitoring Detector. Mean concentration of indoor PM<sub>1.0</sub>, PM<sub>2.5</sub> and PM<sub>10</sub> were 91.7 ± 47.2, 121 ± 62.4, and 140 ± 72.0 µgm<sup>− 3</sup>, respectively. Indoor PM of all size ranges at night were found to be 1.69 times higher than their corresponding daytime concentration. Mean I/O ratio (I/O<sub>day</sub>= 0.95 and I/O<sub>night</sub>= 0.93) and strong positive correlation (R²<sub>day</sub>= 0.90 and R<sup>2</sup><sub>night</sub> = 0.80) between indoor and outdoor PM confirmed infiltration of polluted outdoor air inside the households. Indoor sources had 11% and 14% contribution to indoor PM during day and night, respectively. For Cantonment site, PM measurement was conducted during haze and non- haze weather. Haze- time PM concentration was 1.55 to 1.86 times greater than the non- haze period, which indicated that despite the same indoor environment, infiltrated outdoor PM during haze deteriorated IAQ. The average peak flow rate and SpO<sub>2</sub> of 30 inhabitants in six sampling households were 353 L min<sup>− 1</sup> and 98.7%, respectively. Peak flow rate showed strong, negative correlation (R² = 0.82) with indoor PM<sub>2.5</sub> concentration, which implied that inhalation of excess PM<sub>2.5</sub> was probably responsible for the reduced lung function of the residents. However, no association could be established between SpO<sub>2</sub> and indoor PM<sub>2.5</sub> concentration. These outcomes indicated severely compromised IAQ in urban Dhaka households, so necessary measures are required to reduce the extent of indoor air pollution.</p></div>","PeriodicalId":49109,"journal":{"name":"Air Quality Atmosphere and Health","volume":"17 11","pages":"2515 - 2528"},"PeriodicalIF":2.9000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Air Quality Atmosphere and Health","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s11869-024-01586-3","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigated indoor exposure of particulate matter (PM) at six residential homes in Dhaka, Bangladesh, to assess the degradation of indoor air quality (IAQ) by PM1.0, PM2.5 and PM10, as well as correlate indoor PM2.5 with occupants’ lung efficacy and blood oxygen saturation (SpO2). Concentrations of indoor and outdoor PM were monitored individually at day and night using IGERESS Air Quality Monitoring Detector. Mean concentration of indoor PM1.0, PM2.5 and PM10 were 91.7 ± 47.2, 121 ± 62.4, and 140 ± 72.0 µgm− 3, respectively. Indoor PM of all size ranges at night were found to be 1.69 times higher than their corresponding daytime concentration. Mean I/O ratio (I/Oday= 0.95 and I/Onight= 0.93) and strong positive correlation (R²day= 0.90 and R2night = 0.80) between indoor and outdoor PM confirmed infiltration of polluted outdoor air inside the households. Indoor sources had 11% and 14% contribution to indoor PM during day and night, respectively. For Cantonment site, PM measurement was conducted during haze and non- haze weather. Haze- time PM concentration was 1.55 to 1.86 times greater than the non- haze period, which indicated that despite the same indoor environment, infiltrated outdoor PM during haze deteriorated IAQ. The average peak flow rate and SpO2 of 30 inhabitants in six sampling households were 353 L min− 1 and 98.7%, respectively. Peak flow rate showed strong, negative correlation (R² = 0.82) with indoor PM2.5 concentration, which implied that inhalation of excess PM2.5 was probably responsible for the reduced lung function of the residents. However, no association could be established between SpO2 and indoor PM2.5 concentration. These outcomes indicated severely compromised IAQ in urban Dhaka households, so necessary measures are required to reduce the extent of indoor air pollution.
期刊介绍:
Air Quality, Atmosphere, and Health is a multidisciplinary journal which, by its very name, illustrates the broad range of work it publishes and which focuses on atmospheric consequences of human activities and their implications for human and ecological health.
It offers research papers, critical literature reviews and commentaries, as well as special issues devoted to topical subjects or themes.
International in scope, the journal presents papers that inform and stimulate a global readership, as the topic addressed are global in their import. Consequently, we do not encourage submission of papers involving local data that relate to local problems. Unless they demonstrate wide applicability, these are better submitted to national or regional journals.
Air Quality, Atmosphere & Health addresses such topics as acid precipitation; airborne particulate matter; air quality monitoring and management; exposure assessment; risk assessment; indoor air quality; atmospheric chemistry; atmospheric modeling and prediction; air pollution climatology; climate change and air quality; air pollution measurement; atmospheric impact assessment; forest-fire emissions; atmospheric science; greenhouse gases; health and ecological effects; clean air technology; regional and global change and satellite measurements.
This journal benefits a diverse audience of researchers, public health officials and policy makers addressing problems that call for solutions based in evidence from atmospheric and exposure assessment scientists, epidemiologists, and risk assessors. Publication in the journal affords the opportunity to reach beyond defined disciplinary niches to this broader readership.