{"title":"P-type Gallium nitride creation through O+ implantation","authors":"Sufen Wei, Hao Xu, Cheng-Fu Yang","doi":"10.1142/s021797922540017x","DOIUrl":null,"url":null,"abstract":"P-type GaN was successfully achieved by vertically implanting positive monovalent cations of oxygen (O[Formula: see text]) into undoped (native n-type with an electron concentration of [Formula: see text][Formula: see text]cm[Formula: see text]) (0001) monocrystalline GaN. This implantation was carried out with an energy of 200[Formula: see text]keV and a dose of [Formula: see text] ions/cm2. In the absence of subsequent rapid thermal annealing (RTA) or when exposed to RTA at 950°C for 10[Formula: see text]s in a nitrogen ambient environment, temperature-dependent Hall measurements in a vacuum consistently indicated stable p-type conductivity. For the sample that underwent subsequent RTA, the room-temperature Hall hole concentration measured [Formula: see text][Formula: see text]cm[Formula: see text], the Hall resistivity was 0.44[Formula: see text][Formula: see text][Formula: see text]⋅[Formula: see text]cm, the Hall hole mobility reached 17.81[Formula: see text]cm2[Formula: see text]⋅[Formula: see text]V[Formula: see text][Formula: see text]⋅[Formula: see text]s[Formula: see text], and the acceptor ionization energy was determined to be 0.08[Formula: see text]eV. The doping efficiency was calculated at 5.5%. O[Formula: see text] ions effectively serve as acceptors, whether annealed or not. The p-type conductivity induced by O[Formula: see text] implantation in GaN is notably advantageous and holds practical significance for the ongoing development of future device technology.","PeriodicalId":14108,"journal":{"name":"International Journal of Modern Physics B","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Modern Physics B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s021797922540017x","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
P-type GaN was successfully achieved by vertically implanting positive monovalent cations of oxygen (O[Formula: see text]) into undoped (native n-type with an electron concentration of [Formula: see text][Formula: see text]cm[Formula: see text]) (0001) monocrystalline GaN. This implantation was carried out with an energy of 200[Formula: see text]keV and a dose of [Formula: see text] ions/cm2. In the absence of subsequent rapid thermal annealing (RTA) or when exposed to RTA at 950°C for 10[Formula: see text]s in a nitrogen ambient environment, temperature-dependent Hall measurements in a vacuum consistently indicated stable p-type conductivity. For the sample that underwent subsequent RTA, the room-temperature Hall hole concentration measured [Formula: see text][Formula: see text]cm[Formula: see text], the Hall resistivity was 0.44[Formula: see text][Formula: see text][Formula: see text]⋅[Formula: see text]cm, the Hall hole mobility reached 17.81[Formula: see text]cm2[Formula: see text]⋅[Formula: see text]V[Formula: see text][Formula: see text]⋅[Formula: see text]s[Formula: see text], and the acceptor ionization energy was determined to be 0.08[Formula: see text]eV. The doping efficiency was calculated at 5.5%. O[Formula: see text] ions effectively serve as acceptors, whether annealed or not. The p-type conductivity induced by O[Formula: see text] implantation in GaN is notably advantageous and holds practical significance for the ongoing development of future device technology.
期刊介绍:
Launched in 1987, the International Journal of Modern Physics B covers the most important aspects and the latest developments in Condensed Matter Physics, Statistical Physics, as well as Atomic, Molecular and Optical Physics. A strong emphasis is placed on topics of current interest, such as cold atoms and molecules, new topological materials and phases, and novel low dimensional materials. One unique feature of this journal is its review section which contains articles with permanent research value besides the state-of-the-art research work in the relevant subject areas.