Effect of Cu − hydrazine complex formation on HyBRID decontamination reactions for magnetite, nickel ferrite, and chromite

IF 5.5 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Young-Kyu Han, Jihun Oh, Changhyun Roh
{"title":"Effect of Cu − hydrazine complex formation on HyBRID decontamination reactions for magnetite, nickel ferrite, and chromite","authors":"Young-Kyu Han,&nbsp;Jihun Oh,&nbsp;Changhyun Roh","doi":"10.1007/s42823-024-00744-y","DOIUrl":null,"url":null,"abstract":"<div><p>Various transition metal oxides are deposited on the surface of materials such as stainless steel, which is used in the coolant systems of nuclear power plants. The task of removing harmful radionuclides can be solved through the dissolution reaction of the deposited corrosion oxide layer. In this study, for the first time, the reaction thermodynamics of the hydrazine-based reductive metal ion decontamination (HyBRID) reaction developed by the Korea Atomic Energy Research Institute were studied considering the formation of a strong ion − ligand chemical bond complex between Cu ions and hydrazine. When considering complex formation, we found that it had a significant impact on the thermodynamic decontamination reactions of magnetite, nickel ferrite, and chromite. The reactions were proven to be much more thermodynamically favorable than the reaction energies reported thus far, which did not consider complex formation. We demonstrated that not only the thermodynamic energy but also the structures of the HyBRID reaction products can be significantly changed, depending on complex formation considerations.</p></div>","PeriodicalId":506,"journal":{"name":"Carbon Letters","volume":"34 8","pages":"2091 - 2098"},"PeriodicalIF":5.5000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42823-024-00744-y","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Various transition metal oxides are deposited on the surface of materials such as stainless steel, which is used in the coolant systems of nuclear power plants. The task of removing harmful radionuclides can be solved through the dissolution reaction of the deposited corrosion oxide layer. In this study, for the first time, the reaction thermodynamics of the hydrazine-based reductive metal ion decontamination (HyBRID) reaction developed by the Korea Atomic Energy Research Institute were studied considering the formation of a strong ion − ligand chemical bond complex between Cu ions and hydrazine. When considering complex formation, we found that it had a significant impact on the thermodynamic decontamination reactions of magnetite, nickel ferrite, and chromite. The reactions were proven to be much more thermodynamically favorable than the reaction energies reported thus far, which did not consider complex formation. We demonstrated that not only the thermodynamic energy but also the structures of the HyBRID reaction products can be significantly changed, depending on complex formation considerations.

Abstract Image

铜-肼复合物的形成对磁铁矿、镍铁矿和铬铁矿 HyBRID 净化反应的影响
各种过渡金属氧化物沉积在材料表面,如核电站冷却系统中使用的不锈钢。去除有害放射性核素的任务可以通过沉积腐蚀氧化层的溶解反应来解决。本研究首次研究了韩国原子能研究院开发的基于肼的还原性金属离子去污反应(HyBRID)的反应热力学,考虑了铜离子与肼之间形成强离子-配体化学键络合物的情况。在考虑络合物的形成时,我们发现它对磁铁矿、镍铁矿和铬铁矿的热力学去污反应有重大影响。事实证明,这些反应在热力学上比迄今为止报告的反应能量要有利得多,因为迄今为止报告的反应能量没有考虑络合物的形成。我们证明,不仅热力学能量,而且 HyBRID 反应产物的结构也会因考虑络合物的形成而发生显著变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Carbon Letters
Carbon Letters CHEMISTRY, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
7.30
自引率
20.00%
发文量
118
期刊介绍: Carbon Letters aims to be a comprehensive journal with complete coverage of carbon materials and carbon-rich molecules. These materials range from, but are not limited to, diamond and graphite through chars, semicokes, mesophase substances, carbon fibers, carbon nanotubes, graphenes, carbon blacks, activated carbons, pyrolytic carbons, glass-like carbons, etc. Papers on the secondary production of new carbon and composite materials from the above mentioned various carbons are within the scope of the journal. Papers on organic substances, including coals, will be considered only if the research has close relation to the resulting carbon materials. Carbon Letters also seeks to keep abreast of new developments in their specialist fields and to unite in finding alternative energy solutions to current issues such as the greenhouse effect and the depletion of the ozone layer. The renewable energy basics, energy storage and conversion, solar energy, wind energy, water energy, nuclear energy, biomass energy, hydrogen production technology, and other clean energy technologies are also within the scope of the journal. Carbon Letters invites original reports of fundamental research in all branches of the theory and practice of carbon science and technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信