Investigating the kinetics of small alcohol oxidation reactions using platinum supported on a doped niobium suboxide support

IF 2.9 Q2 ELECTROCHEMISTRY
Keenan Black-Araujo, Katherine Nguyen, R. Esfahani, E. Easton
{"title":"Investigating the kinetics of small alcohol oxidation reactions using platinum supported on a doped niobium suboxide support","authors":"Keenan Black-Araujo, Katherine Nguyen, R. Esfahani, E. Easton","doi":"10.1002/elsa.202300030","DOIUrl":null,"url":null,"abstract":"Platinum nanoparticles deposited on a silicon‐doped niobium suboxide support provided the catalyst known as Pt/NbOS. This was compared to the commercial Pt/C electrocatalyst in the ethanol and methanol oxidation reactions for use in direct alcohol fuel cells. Cyclic voltammetry and electrochemical impedance spectroscopy demonstrate that the employment of the metal oxide support provides higher peak oxidation currents and smaller charge transfer resistances during alcohol oxidation. Carbon monoxide (CO) stripping experiments showed enhanced removal of CO by Pt/NbOS compared to Pt/C. Pt/NbOS shows its smallest apparent activation energies of 13.3 and 11.9 J mol‐1, for methanol and ethanol oxidation respectively, which are 38% and 27% lower than those of Pt/C at the same potentials. This increased activity of Pt/NbOS is attributed to the strong metal‐support interactions between the active Pt nanoparticles and the NbOS support which demonstrate its utility in replacing Pt/C in methanol and ethanol fuel cells.","PeriodicalId":93746,"journal":{"name":"Electrochemical science advances","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochemical science advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/elsa.202300030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

Platinum nanoparticles deposited on a silicon‐doped niobium suboxide support provided the catalyst known as Pt/NbOS. This was compared to the commercial Pt/C electrocatalyst in the ethanol and methanol oxidation reactions for use in direct alcohol fuel cells. Cyclic voltammetry and electrochemical impedance spectroscopy demonstrate that the employment of the metal oxide support provides higher peak oxidation currents and smaller charge transfer resistances during alcohol oxidation. Carbon monoxide (CO) stripping experiments showed enhanced removal of CO by Pt/NbOS compared to Pt/C. Pt/NbOS shows its smallest apparent activation energies of 13.3 and 11.9 J mol‐1, for methanol and ethanol oxidation respectively, which are 38% and 27% lower than those of Pt/C at the same potentials. This increased activity of Pt/NbOS is attributed to the strong metal‐support interactions between the active Pt nanoparticles and the NbOS support which demonstrate its utility in replacing Pt/C in methanol and ethanol fuel cells.
研究使用掺杂亚氧化铌支撑铂的小醇氧化反应动力学
铂纳米颗粒沉积在掺硅的亚氧化铌载体上,形成了被称为 Pt/NbOS 的催化剂。在乙醇和甲醇氧化反应中,该催化剂与用于直接酒精燃料电池的商用 Pt/C 电催化剂进行了比较。循环伏安法和电化学阻抗光谱法表明,在酒精氧化过程中,使用金属氧化物支持物可提供更高的峰值氧化电流和更小的电荷转移电阻。一氧化碳(CO)剥离实验表明,与 Pt/C 相比,Pt/NbOS 对 CO 的去除率更高。在甲醇和乙醇氧化过程中,Pt/NbOS 的表观活化能分别为 13.3 J mol-1 和 11.9 J mol-1,比相同电位下的 Pt/C 低 38% 和 27%。Pt/NbOS 活性的提高归因于活性铂纳米颗粒与 NbOS 支持物之间强烈的金属-支持物相互作用,这证明了它在甲醇和乙醇燃料电池中替代 Pt/C 的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.80
自引率
0.00%
发文量
0
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信