Hector Linares Arroyo, Angela Abascal, Tobias Degen, Martin Aubé, Brian R. Espey, Geza Gyuk, Franz Hölker, Andreas Jechow, Monika Kuffer, Alejandro Sánchez de Miguel, Alexandre Simoneau, Ken Walczak, Christopher C. M. Kyba
{"title":"Monitoring, trends and impacts of light pollution","authors":"Hector Linares Arroyo, Angela Abascal, Tobias Degen, Martin Aubé, Brian R. Espey, Geza Gyuk, Franz Hölker, Andreas Jechow, Monika Kuffer, Alejandro Sánchez de Miguel, Alexandre Simoneau, Ken Walczak, Christopher C. M. Kyba","doi":"10.1038/s43017-024-00555-9","DOIUrl":null,"url":null,"abstract":"Light pollution has increased globally, with 80% of the total population now living under light-polluted skies. In this Review, we elucidate the scope and importance of light pollution and discuss techniques to monitor it. In urban areas, light emissions from sources such as street lights lead to a zenith radiance 40 times larger than that of an unpolluted night sky. Non-urban areas account for over 50% of the total night-time light observed by satellites, with contributions from sources such as transportation networks and resource extraction. Artificial light can disturb the migratory and reproductive behaviours of animals even at the low illuminances from diffuse skyglow. Additionally, lighting (indoor and outdoor) accounts for 20% of global electricity consumption and 6% of CO2 emissions, leading to indirect environmental impacts and a financial cost. However, existing monitoring techniques can only perform a limited number of measurements throughout the night and lack spectral and spatial resolution. Therefore, satellites with improved spectral and spatial resolution are needed to enable time series analysis of light pollution trends throughout the night. Increasing light emissions threaten human and ecological health. This Review outlines existing measurements and projections of light pollution trends and impacts, as well as developments in ground-based and remote sensing techniques that are needed to improve them.","PeriodicalId":18921,"journal":{"name":"Nature Reviews Earth & Environment","volume":"5 6","pages":"417-430"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Earth & Environment","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43017-024-00555-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Light pollution has increased globally, with 80% of the total population now living under light-polluted skies. In this Review, we elucidate the scope and importance of light pollution and discuss techniques to monitor it. In urban areas, light emissions from sources such as street lights lead to a zenith radiance 40 times larger than that of an unpolluted night sky. Non-urban areas account for over 50% of the total night-time light observed by satellites, with contributions from sources such as transportation networks and resource extraction. Artificial light can disturb the migratory and reproductive behaviours of animals even at the low illuminances from diffuse skyglow. Additionally, lighting (indoor and outdoor) accounts for 20% of global electricity consumption and 6% of CO2 emissions, leading to indirect environmental impacts and a financial cost. However, existing monitoring techniques can only perform a limited number of measurements throughout the night and lack spectral and spatial resolution. Therefore, satellites with improved spectral and spatial resolution are needed to enable time series analysis of light pollution trends throughout the night. Increasing light emissions threaten human and ecological health. This Review outlines existing measurements and projections of light pollution trends and impacts, as well as developments in ground-based and remote sensing techniques that are needed to improve them.