{"title":"Effects of rainfall pattern classification methods on the probability estimation of typhoon-induced debris-flow occurrence","authors":"Zhixu Bai, Youjian Yang, Lin Guo, Leman Lin","doi":"10.2166/hydro.2024.286","DOIUrl":null,"url":null,"abstract":"\n \n The frequent occurrence of typhoons causes geological disasters, such as debris flow and landslide, by bringing extreme rainfall events. Due to the lack of data collection on extreme rainfall events caused by typhoons, the relationship between rainfall patterns and debris flow has not been deeply studied. Therefore, based on hourly rainfall data during typhoons in Wenzhou from 1980 to 2017, this study used a variety of methods to classify the rainfall events and analyze the characteristics of typhoon-induced rainfall events and their impacts on the probability of debris-flow occurrence. Three classification techniques, including dynamic time warping, K-Means cluster, and self-organizing maps, are applied with two ways to normalize rainfall records, including dimensionless rainfall density curves and dimensionless rainfall cumulation curves, for extracting rainfall patterns from recorded 1 h rainfall data. The rainfall patterns are then used for the estimation of typhoon-induced debris-flow occurrence probability. Results show that different methods present different rainfall patterns. The probability of debris flows varies with different patterns of rainfall events. The research results help deepen the understanding of typhoon rainfall events and debris-flow disaster prevention in the region and contribute to regional flood control and disaster reduction.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"13 10","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2166/hydro.2024.286","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
The frequent occurrence of typhoons causes geological disasters, such as debris flow and landslide, by bringing extreme rainfall events. Due to the lack of data collection on extreme rainfall events caused by typhoons, the relationship between rainfall patterns and debris flow has not been deeply studied. Therefore, based on hourly rainfall data during typhoons in Wenzhou from 1980 to 2017, this study used a variety of methods to classify the rainfall events and analyze the characteristics of typhoon-induced rainfall events and their impacts on the probability of debris-flow occurrence. Three classification techniques, including dynamic time warping, K-Means cluster, and self-organizing maps, are applied with two ways to normalize rainfall records, including dimensionless rainfall density curves and dimensionless rainfall cumulation curves, for extracting rainfall patterns from recorded 1 h rainfall data. The rainfall patterns are then used for the estimation of typhoon-induced debris-flow occurrence probability. Results show that different methods present different rainfall patterns. The probability of debris flows varies with different patterns of rainfall events. The research results help deepen the understanding of typhoon rainfall events and debris-flow disaster prevention in the region and contribute to regional flood control and disaster reduction.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.