High-Speed and Low-Power 2 × 2 Thermo-Optic Switch Based on Dual Silicon Topological Nanobeam Cavities

Qiyao Sun, Yingdi Pan, Pan Hu, Songyue Liu, Qi Lu, Hongwei Wang, Lu Sun, Yikai Su
{"title":"High-Speed and Low-Power 2 × 2 Thermo-Optic Switch Based on Dual Silicon Topological Nanobeam Cavities","authors":"Qiyao Sun,&nbsp;Yingdi Pan,&nbsp;Pan Hu,&nbsp;Songyue Liu,&nbsp;Qi Lu,&nbsp;Hongwei Wang,&nbsp;Lu Sun,&nbsp;Yikai Su","doi":"10.1002/apxr.202400050","DOIUrl":null,"url":null,"abstract":"<p>A 2 × 2 thermo-optic (TO) switch using dual topological photonic crystal nanobeam (PCN) cavities on the silicon-on-insulator (SOI) platform is proposed and experimentally demonstrated. A Fano resonance is observed due to the interference between the topological interface state of the 1D topological PCN cavity and the Fabry-Perot (F-P) cavity mode formed between the two facets of the finitely long nanobeam waveguide. Thanks to the sharp rising edge of the spectral response of the Fano resonance and the high confinement of light in the topological PCN cavities, a 2 × 2 TO switch is realized with short switching time and low power consumption. The measured switching power is only 1.55 mW, and the rising time and the falling time are 3 and 5.6 µs, respectively in the on-off switching experiments. To the best of the knowledge, this is the first time that a dual topological PCN structure is utilized to realize a high-speed and low-power TO switch, revealing the possibility of designing high-performance reconfigurable optical devices and networks using topological photonics.</p>","PeriodicalId":100035,"journal":{"name":"Advanced Physics Research","volume":"3 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/apxr.202400050","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Physics Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/apxr.202400050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A 2 × 2 thermo-optic (TO) switch using dual topological photonic crystal nanobeam (PCN) cavities on the silicon-on-insulator (SOI) platform is proposed and experimentally demonstrated. A Fano resonance is observed due to the interference between the topological interface state of the 1D topological PCN cavity and the Fabry-Perot (F-P) cavity mode formed between the two facets of the finitely long nanobeam waveguide. Thanks to the sharp rising edge of the spectral response of the Fano resonance and the high confinement of light in the topological PCN cavities, a 2 × 2 TO switch is realized with short switching time and low power consumption. The measured switching power is only 1.55 mW, and the rising time and the falling time are 3 and 5.6 µs, respectively in the on-off switching experiments. To the best of the knowledge, this is the first time that a dual topological PCN structure is utilized to realize a high-speed and low-power TO switch, revealing the possibility of designing high-performance reconfigurable optical devices and networks using topological photonics.

Abstract Image

基于双硅拓扑纳米束腔的高速、低功耗 2 × 2 热光学开关
本研究提出了一种在硅绝缘体(SOI)平台上使用双拓扑光子晶体纳米束(PCN)腔体的 2 × 2 热光学(TO)开关,并进行了实验演示。由于一维拓扑 PCN 腔的拓扑界面态与有限长纳米束波导的两个面之间形成的法布里-珀罗(F-P)腔模之间存在干涉,因此观察到了法诺共振。得益于法诺共振频谱响应的尖锐上升沿以及拓扑 PCN 腔对光的高度约束,实现了开关时间短、功耗低的 2 × 2 TO 开关。在开关实验中,测得的开关功率仅为 1.55 mW,上升时间和下降时间分别为 3 和 5.6 µs。据了解,这是首次利用双拓扑 PCN 结构实现高速、低功耗 TO 开关,揭示了利用拓扑光子学设计高性能可重构光器件和网络的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信