Haoyang Bi, Qi Liu, Han Wu, Weidong He, Zhenya Huang, Yu Yin, Haiping Ma, Yu Su, Shijin Wang, Enhong Chen
{"title":"Model-Agnostic Adaptive Testing for Intelligent Education Systems via Meta-learned Gradient Embeddings","authors":"Haoyang Bi, Qi Liu, Han Wu, Weidong He, Zhenya Huang, Yu Yin, Haiping Ma, Yu Su, Shijin Wang, Enhong Chen","doi":"10.1145/3660642","DOIUrl":null,"url":null,"abstract":"\n The field of education has undergone a significant revolution with the advent of intelligent systems and technology, which aim to personalize the learning experience, catering to the unique needs and abilities of individual learners. In this pursuit, a fundamental challenge is designing proper test for assessing the students’ cognitive status on knowledge and skills accurately and efficiently. One promising approach, referred to as\n Computerized Adaptive Testing\n (CAT), is to administrate computer-automated tests that alternately select the next item for each examinee and estimate their cognitive states given their responses to the selected items. Nevertheless, existing CAT systems suffer from inflexibility in item selection and ineffectiveness in cognitive state estimation, respectively. In this paper, we propose a Model-Agnostic adaptive testing framework via Meta-leaned Gradient Embeddings, MAMGE for short, improving both item selection and cognitive state estimation simultaneously. For item selection, we design a Gradient Embedding based Item Selector (GEIS) which incorporates the concept of gradient embeddings to represent items and selects the best ones that are both informative and representative. For cognitive state estimation, we propose a Meta-learned Cognitive State Estimator (MCSE) to automatically control the estimation process by learning to learn a proper initialization and dynamically inferred updates. Both MCSE and GEIS are inherently model-agnostic, and the two modules have an ingenious connection via meta-learned gradient embeddings. Finally, extensive experiments evaluate the effectiveness and flexibility of MAMGE.\n","PeriodicalId":48967,"journal":{"name":"ACM Transactions on Intelligent Systems and Technology","volume":null,"pages":null},"PeriodicalIF":7.2000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Intelligent Systems and Technology","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3660642","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The field of education has undergone a significant revolution with the advent of intelligent systems and technology, which aim to personalize the learning experience, catering to the unique needs and abilities of individual learners. In this pursuit, a fundamental challenge is designing proper test for assessing the students’ cognitive status on knowledge and skills accurately and efficiently. One promising approach, referred to as
Computerized Adaptive Testing
(CAT), is to administrate computer-automated tests that alternately select the next item for each examinee and estimate their cognitive states given their responses to the selected items. Nevertheless, existing CAT systems suffer from inflexibility in item selection and ineffectiveness in cognitive state estimation, respectively. In this paper, we propose a Model-Agnostic adaptive testing framework via Meta-leaned Gradient Embeddings, MAMGE for short, improving both item selection and cognitive state estimation simultaneously. For item selection, we design a Gradient Embedding based Item Selector (GEIS) which incorporates the concept of gradient embeddings to represent items and selects the best ones that are both informative and representative. For cognitive state estimation, we propose a Meta-learned Cognitive State Estimator (MCSE) to automatically control the estimation process by learning to learn a proper initialization and dynamically inferred updates. Both MCSE and GEIS are inherently model-agnostic, and the two modules have an ingenious connection via meta-learned gradient embeddings. Finally, extensive experiments evaluate the effectiveness and flexibility of MAMGE.
期刊介绍:
ACM Transactions on Intelligent Systems and Technology is a scholarly journal that publishes the highest quality papers on intelligent systems, applicable algorithms and technology with a multi-disciplinary perspective. An intelligent system is one that uses artificial intelligence (AI) techniques to offer important services (e.g., as a component of a larger system) to allow integrated systems to perceive, reason, learn, and act intelligently in the real world.
ACM TIST is published quarterly (six issues a year). Each issue has 8-11 regular papers, with around 20 published journal pages or 10,000 words per paper. Additional references, proofs, graphs or detailed experiment results can be submitted as a separate appendix, while excessively lengthy papers will be rejected automatically. Authors can include online-only appendices for additional content of their published papers and are encouraged to share their code and/or data with other readers.