O. L. Kafka, A. K. Landauer, J. T. Benzing, N. H. Moser, E. Mansfield, E. J. Garboczi
{"title":"A Technique for In-Situ Displacement and Strain Measurement with Laboratory-Scale X-Ray Computed Tomography","authors":"O. L. Kafka, A. K. Landauer, J. T. Benzing, N. H. Moser, E. Mansfield, E. J. Garboczi","doi":"10.1007/s40799-024-00715-y","DOIUrl":null,"url":null,"abstract":"<p><b>Purpose</b>: Establish a technique for simultaneous interrupted volumetric imaging of internal structure and time-resolved full-field surface strain measurements during <i>in-situ</i> X-ray micro-computed tomography (XCT) experiments. This enables <i>in-situ</i> testing of stiff materials with large forces relative to the compliance of the <i>in-situ</i> load frame, which might exhibit localization (e.g., necking, compaction banding) and other inhomogeneous behaviors.<b>Methods</b>: The system utilizes a combination of <i>in-situ</i> XCT, 2D X-ray imaging, and particle tracking to conduct volumetric imaging of the internal structure of a specimen with interrupted loading and surface strain mapping during loading. Critically, prior to the laboratory-scale XCT experiments, specimens are speckled with a high-X-ray-contrast powder that is bonded the surface. During <i>in-situ</i> loading, the XCT system is programmed to capture sequential 2D X-ray images orthogonal to the speckled specimen surface. A single particle tracking (SPT) or digital image correlation (DIC) algorithm is used to measure full-field surface strain evolution throughout the time-sequence of images. At specified crosshead displacements, the motion and 2D image sequence is paused for volumetric XCT image collection. <b>Results</b>: We show example results on a micro-tensile demonstration specimen additive manufactured from Inconel 718 nickel-chrome alloy. Results include XCT volume reconstructions, crosshead-based engineering stress, and full-field strain maps. <b>Conclusion</b>: We demonstrate an <i>in-situ</i> technique to obtain surface strain evolution during laboratory-scale XCT testing and interrupted volumetric imaging. This allows closer investigation of, for example, the effect of micro-pores on the strain localization behavior of additive manufactured metal alloys. In addition to describing the method using a representative test piece, the dataset and code are published as open-source resources for the community.</p>","PeriodicalId":553,"journal":{"name":"Experimental Techniques","volume":"48 6","pages":"1101 - 1116"},"PeriodicalIF":1.5000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40799-024-00715-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Techniques","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s40799-024-00715-y","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: Establish a technique for simultaneous interrupted volumetric imaging of internal structure and time-resolved full-field surface strain measurements during in-situ X-ray micro-computed tomography (XCT) experiments. This enables in-situ testing of stiff materials with large forces relative to the compliance of the in-situ load frame, which might exhibit localization (e.g., necking, compaction banding) and other inhomogeneous behaviors.Methods: The system utilizes a combination of in-situ XCT, 2D X-ray imaging, and particle tracking to conduct volumetric imaging of the internal structure of a specimen with interrupted loading and surface strain mapping during loading. Critically, prior to the laboratory-scale XCT experiments, specimens are speckled with a high-X-ray-contrast powder that is bonded the surface. During in-situ loading, the XCT system is programmed to capture sequential 2D X-ray images orthogonal to the speckled specimen surface. A single particle tracking (SPT) or digital image correlation (DIC) algorithm is used to measure full-field surface strain evolution throughout the time-sequence of images. At specified crosshead displacements, the motion and 2D image sequence is paused for volumetric XCT image collection. Results: We show example results on a micro-tensile demonstration specimen additive manufactured from Inconel 718 nickel-chrome alloy. Results include XCT volume reconstructions, crosshead-based engineering stress, and full-field strain maps. Conclusion: We demonstrate an in-situ technique to obtain surface strain evolution during laboratory-scale XCT testing and interrupted volumetric imaging. This allows closer investigation of, for example, the effect of micro-pores on the strain localization behavior of additive manufactured metal alloys. In addition to describing the method using a representative test piece, the dataset and code are published as open-source resources for the community.
期刊介绍:
Experimental Techniques is a bimonthly interdisciplinary publication of the Society for Experimental Mechanics focusing on the development, application and tutorial of experimental mechanics techniques.
The purpose for Experimental Techniques is to promote pedagogical, technical and practical advancements in experimental mechanics while supporting the Society''s mission and commitment to interdisciplinary application, research and development, education, and active promotion of experimental methods to:
- Increase the knowledge of physical phenomena
- Further the understanding of the behavior of materials, structures, and systems
- Provide the necessary physical observations necessary to improve and assess new analytical and computational approaches.