Irina I. Vaseva, Iskren Sergiev, D. Todorova, Martynas Urbutis, Giedrė Samuolienė, Lyudmila Simova-Stoilova
{"title":"Combined Pretreatment with Bioequivalent Doses of Plant Growth Regulators Alleviates Dehydration Stress in Lactuca sativa","authors":"Irina I. Vaseva, Iskren Sergiev, D. Todorova, Martynas Urbutis, Giedrė Samuolienė, Lyudmila Simova-Stoilova","doi":"10.3390/horticulturae10060544","DOIUrl":null,"url":null,"abstract":"Plant hormones regulate adaptive responses to various biotic and abiotic stress factors. Applied exogenously, they trigger the natural plant defense mechanisms, a feature that could be implemented in strategies for supporting crop resilience. The potential of the exogenous cytokinin-like acting compound (kinetin), the auxin analogue 1-naphtyl acetic acid (NAA), abscisic acid (ABA) and the ethyleneprecursor 1-aminocyclopropane-1-carboxylic acid (ACC) to mitigate dehydration was tested on Lactuca sativa (lettuce) grown on 12% polyethylene glycol (PEG). Priming with different blends containing these plant growth regulators (PGRs) applied in bioequivalent concentrations was evaluated through biometric measurements and biochemical analyses. The combined treatment with the four compounds exhibited the best dehydration protective effect. The antioxidative enzyme profiling of the PGR-primed individuals revealed increased superoxide dismutase (SOD), catalase and peroxidase activity in the leaves. Immunodetection of higher levels of the rate-limiting enzyme for proline biosynthesis (delta-pyroline-5-carboxylate synthase) in the primed plants coincided with a significantly higher content of the amino acid measured in the leaves. These plants also accumulated particular dehydrin types, which may have contributed to the observed stress-relieving effect. The four-component mix applied by spraying or through the roots exerted similar stress-mitigating properties on soil-grown lettuce subjected to moderate drought.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":"10 8","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/horticulturae10060544","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Plant hormones regulate adaptive responses to various biotic and abiotic stress factors. Applied exogenously, they trigger the natural plant defense mechanisms, a feature that could be implemented in strategies for supporting crop resilience. The potential of the exogenous cytokinin-like acting compound (kinetin), the auxin analogue 1-naphtyl acetic acid (NAA), abscisic acid (ABA) and the ethyleneprecursor 1-aminocyclopropane-1-carboxylic acid (ACC) to mitigate dehydration was tested on Lactuca sativa (lettuce) grown on 12% polyethylene glycol (PEG). Priming with different blends containing these plant growth regulators (PGRs) applied in bioequivalent concentrations was evaluated through biometric measurements and biochemical analyses. The combined treatment with the four compounds exhibited the best dehydration protective effect. The antioxidative enzyme profiling of the PGR-primed individuals revealed increased superoxide dismutase (SOD), catalase and peroxidase activity in the leaves. Immunodetection of higher levels of the rate-limiting enzyme for proline biosynthesis (delta-pyroline-5-carboxylate synthase) in the primed plants coincided with a significantly higher content of the amino acid measured in the leaves. These plants also accumulated particular dehydrin types, which may have contributed to the observed stress-relieving effect. The four-component mix applied by spraying or through the roots exerted similar stress-mitigating properties on soil-grown lettuce subjected to moderate drought.
期刊介绍:
ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric.
Indexed/Abstracted:
Web of Science SCIE
Scopus
CAS
INSPEC
Portico