{"title":"Intelligent Stroke Disease Prediction Model Using Deep Learning Approaches","authors":"Chunhua Gao, Hui Wang","doi":"10.1155/2024/4523388","DOIUrl":null,"url":null,"abstract":"Stroke is a high morbidity and mortality disease that poses a serious threat to people’s health. Early recognition of the various warning signs of stroke is necessary so that timely clinical intervention can help reduce the severity of stroke. Deep neural networks have powerful feature representation capabilities and can automatically learn discriminant features from large amounts of data. This paper uses a range of physiological characteristic parameters and collaborates with deep neural networks, such as the Wasserstein generative adversarial networks with gradient penalty and regression network, to construct a stroke prediction model. Firstly, to address the problem of imbalance between positive and negative samples in the stroke public data set, we performed positive sample data augmentation and utilized WGAN-GP to generate stroke data with high fidelity and used it for the training of the prediction network model. Then, the relationship between observable physiological characteristic parameters and the predicted risk of suffering a stroke was modeled as a nonlinear mapping transformation, and a stroke prediction model based on a deep regression network was designed. Finally, the proposed method is compared with commonly used machine learning-based classification algorithms such as decision tree, random forest, support vector machine, and artificial neural networks. The prediction results of the proposed method are optimal in the comprehensive measurement index F. Further ablation experiments also show that the designed prediction model has certain robustness and can effectively predict stroke diseases.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"31 24","pages":""},"PeriodicalIF":16.4000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2024/4523388","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Stroke is a high morbidity and mortality disease that poses a serious threat to people’s health. Early recognition of the various warning signs of stroke is necessary so that timely clinical intervention can help reduce the severity of stroke. Deep neural networks have powerful feature representation capabilities and can automatically learn discriminant features from large amounts of data. This paper uses a range of physiological characteristic parameters and collaborates with deep neural networks, such as the Wasserstein generative adversarial networks with gradient penalty and regression network, to construct a stroke prediction model. Firstly, to address the problem of imbalance between positive and negative samples in the stroke public data set, we performed positive sample data augmentation and utilized WGAN-GP to generate stroke data with high fidelity and used it for the training of the prediction network model. Then, the relationship between observable physiological characteristic parameters and the predicted risk of suffering a stroke was modeled as a nonlinear mapping transformation, and a stroke prediction model based on a deep regression network was designed. Finally, the proposed method is compared with commonly used machine learning-based classification algorithms such as decision tree, random forest, support vector machine, and artificial neural networks. The prediction results of the proposed method are optimal in the comprehensive measurement index F. Further ablation experiments also show that the designed prediction model has certain robustness and can effectively predict stroke diseases.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.