Chengkang Chen, Li Li, Shaoxuan Zhang, Jianguo Liu* and Frank Wania*,
{"title":"Modeling Global Environmental Fate and Quantifying Global Source–Receptor Relationships of Short-, Medium-, and Long-Chain Chlorinated Paraffins","authors":"Chengkang Chen, Li Li, Shaoxuan Zhang, Jianguo Liu* and Frank Wania*, ","doi":"10.1021/acs.estlett.4c00306","DOIUrl":null,"url":null,"abstract":"<p >Decades-long emissions and long-range transport of chlorinated paraffins (CPs) have resulted in their pervasive presence in the global environment. The lack of an understanding of the global distribution of short-, medium-, and long-chain CPs (SCCPs, MCCPs, and LCCPs) hinders us from quantitatively tracing their origins in remote regions. Using the BETR-Global model and historical emission estimates, we simulate the global dispersion of CPs from 1930 to 2020. Whereas contamination trends in the main contaminated regions (East Asia, Europe, North America, and South Asia) diverge, CP concentrations in the Arctic, Antarctica, and the Tibetan Plateau all increase. By 2020, East Asian, European, and North American emissions contributed 38%, 26%, and 18% of CP contamination in the High Arctic, respectively, while Southern hemispheric emissions and emissions around the Tibetan Plateau primarily contribute to CP contamination in central Antarctica and on the Plateau, respectively. Our results emphasize the important contribution of (i) European and North American emissions to historical CP contamination in remote regions and current MCCP and LCCP contamination in the High Arctic and (ii) East Asian emission to current SCCP and MCCP contamination of all three remote regions. These results can help to evaluate the effectiveness of potential global and regional CP emission-reduction strategies.</p>","PeriodicalId":37,"journal":{"name":"Environmental Science & Technology Letters Environ.","volume":"11 6","pages":"626–633"},"PeriodicalIF":8.9000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science & Technology Letters Environ.","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.estlett.4c00306","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Decades-long emissions and long-range transport of chlorinated paraffins (CPs) have resulted in their pervasive presence in the global environment. The lack of an understanding of the global distribution of short-, medium-, and long-chain CPs (SCCPs, MCCPs, and LCCPs) hinders us from quantitatively tracing their origins in remote regions. Using the BETR-Global model and historical emission estimates, we simulate the global dispersion of CPs from 1930 to 2020. Whereas contamination trends in the main contaminated regions (East Asia, Europe, North America, and South Asia) diverge, CP concentrations in the Arctic, Antarctica, and the Tibetan Plateau all increase. By 2020, East Asian, European, and North American emissions contributed 38%, 26%, and 18% of CP contamination in the High Arctic, respectively, while Southern hemispheric emissions and emissions around the Tibetan Plateau primarily contribute to CP contamination in central Antarctica and on the Plateau, respectively. Our results emphasize the important contribution of (i) European and North American emissions to historical CP contamination in remote regions and current MCCP and LCCP contamination in the High Arctic and (ii) East Asian emission to current SCCP and MCCP contamination of all three remote regions. These results can help to evaluate the effectiveness of potential global and regional CP emission-reduction strategies.
期刊介绍:
Environmental Science & Technology Letters serves as an international forum for brief communications on experimental or theoretical results of exceptional timeliness in all aspects of environmental science, both pure and applied. Published as soon as accepted, these communications are summarized in monthly issues. Additionally, the journal features short reviews on emerging topics in environmental science and technology.