Advancing Frontiers: A High-Impact Study on the Synthesis, Characterization, and Superior Device Performance of AlCr2O4/MXene Nanocomposites

IF 1.8 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
M. Rani, Aqeel Ahmad Shah, K. Tariq, Akram Ibrahim, Mika Sillanpaa, Mohamad Ouladsmane, Naseem Akhtar
{"title":"Advancing Frontiers: A High-Impact Study on the Synthesis, Characterization, and Superior Device Performance of AlCr2O4/MXene Nanocomposites","authors":"M. Rani, Aqeel Ahmad Shah, K. Tariq, Akram Ibrahim, Mika Sillanpaa, Mohamad Ouladsmane, Naseem Akhtar","doi":"10.1149/2162-8777/ad4ff1","DOIUrl":null,"url":null,"abstract":"\n Here we present the fabrication of a multilayer resistive memory device (ReRAM) utilizing AlCr2O4/MXene nanocomposite. Comprehensive investigations into the structural and morphological properties of the nanostructures were conducted using various characterization techniques. The fabricated device was tested by measuring I-V characteristics at different current applications which encompasses all previous results. The band gap value for the nanocomposite was reduced to 2.42 eV while that for AlCr2O4 was measured at 3.25 eV via photoluminescence spectrum. Average particle size of the AlCr2O4/MXene nanocomposite was determined to be 25 nm through powder X-ray diffraction analysis. Crystallographic analysis revealed that all crystal peaks conform to the R-3c (167) space group, indicative of a standard hexagonal crystal structure. Energy-dispersive X-ray readings provided further confirmation that all required elements are present in the sample, affirming successful synthesis of the nanocomposite. Notably, the nanocomposite demonstrated exceptional performance as an electrode material in ReRAM, as evidenced by its current-voltage characteristics, making the AlCr2O4/MXene nanocomposite suitable for a wide range of next-generation device applications.","PeriodicalId":11496,"journal":{"name":"ECS Journal of Solid State Science and Technology","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ECS Journal of Solid State Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1149/2162-8777/ad4ff1","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Here we present the fabrication of a multilayer resistive memory device (ReRAM) utilizing AlCr2O4/MXene nanocomposite. Comprehensive investigations into the structural and morphological properties of the nanostructures were conducted using various characterization techniques. The fabricated device was tested by measuring I-V characteristics at different current applications which encompasses all previous results. The band gap value for the nanocomposite was reduced to 2.42 eV while that for AlCr2O4 was measured at 3.25 eV via photoluminescence spectrum. Average particle size of the AlCr2O4/MXene nanocomposite was determined to be 25 nm through powder X-ray diffraction analysis. Crystallographic analysis revealed that all crystal peaks conform to the R-3c (167) space group, indicative of a standard hexagonal crystal structure. Energy-dispersive X-ray readings provided further confirmation that all required elements are present in the sample, affirming successful synthesis of the nanocomposite. Notably, the nanocomposite demonstrated exceptional performance as an electrode material in ReRAM, as evidenced by its current-voltage characteristics, making the AlCr2O4/MXene nanocomposite suitable for a wide range of next-generation device applications.
推进前沿:关于 AlCr2O4/MXene 纳米复合材料的合成、表征和卓越器件性能的重要研究
在此,我们介绍了利用 AlCr2O4/MXene 纳米复合材料制造多层电阻式存储器件(ReRAM)的情况。我们利用各种表征技术对纳米结构的结构和形态特性进行了全面研究。通过测量不同电流应用下的 I-V 特性,对制造出的器件进行了测试,测试结果涵盖了之前的所有结果。纳米复合材料的带隙值降低到了 2.42 eV,而通过光致发光光谱测量,AlCr2O4 的带隙值为 3.25 eV。通过粉末 X 射线衍射分析,确定 AlCr2O4/MXene 纳米复合材料的平均粒径为 25 纳米。晶体学分析表明,所有晶体峰都符合 R-3c (167) 空间群,表明其为标准六方晶体结构。能量色散 X 射线读数进一步证实了样品中含有所有必需元素,从而肯定了纳米复合材料的成功合成。值得注意的是,该纳米复合材料作为 ReRAM 的电极材料表现出了卓越的性能,其电流-电压特性证明了这一点,从而使 AlCr2O4/MXene 纳米复合材料适用于广泛的下一代设备应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ECS Journal of Solid State Science and Technology
ECS Journal of Solid State Science and Technology MATERIALS SCIENCE, MULTIDISCIPLINARY-PHYSICS, APPLIED
CiteScore
4.50
自引率
13.60%
发文量
455
期刊介绍: The ECS Journal of Solid State Science and Technology (JSS) was launched in 2012, and publishes outstanding research covering fundamental and applied areas of solid state science and technology, including experimental and theoretical aspects of the chemistry and physics of materials and devices. JSS has five topical interest areas: carbon nanostructures and devices dielectric science and materials electronic materials and processing electronic and photonic devices and systems luminescence and display materials, devices and processing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信