Enhancing spectrum sensing efficiency in multi-channel cognitive device-to-device networks: Medium Access Control layer strategies and analysis

IF 1.5 Q3 TELECOMMUNICATIONS
Irfan Latif Khan, Adeel Iqbal, Ali Nauman, Muhammad Ali Jamshed, Atif Shakeel, Riaz Hussain, Adnan Rashid, Tommaso Pecorella
{"title":"Enhancing spectrum sensing efficiency in multi-channel cognitive device-to-device networks: Medium Access Control layer strategies and analysis","authors":"Irfan Latif Khan,&nbsp;Adeel Iqbal,&nbsp;Ali Nauman,&nbsp;Muhammad Ali Jamshed,&nbsp;Atif Shakeel,&nbsp;Riaz Hussain,&nbsp;Adnan Rashid,&nbsp;Tommaso Pecorella","doi":"10.1049/wss2.12079","DOIUrl":null,"url":null,"abstract":"<p>The detection and characterisation of electromagnetic signals within a specific frequency range, known as spectrum sensing, plays a crucial role in Cognitive Radio Networks (CRNs). The CRNs aim to adapt their communication parameters to the surrounding radio environment, thereby improving the efficiency and utilisation of the available radio spectrum. Spectrum sensing is particularly important in device-to-device (D2D) communication when operating independently of the cellular network infrastructure. The Medium Access Control (MAC) protocol coordinates device communication and ensures interference-free operation of the CRN coexisting with the primary cellular network. A spectrum sensing strategy at the MAC layer for cognitive D2D communication. The strategy focuses on reducing the overall sensing period allocated at the MAC layer by having each Cognitive D2D User (cD2DU) sense a smaller subset of available channels while maintaining the same sensing time for cellular user detection at the physical layer. To achieve this, the concept of concurrent groups of D2D devices is introduced in proximity, which are formed by using unique IDs of cD2DUs during the device discovery stage. Each concurrent group senses a specific portion of the cellular user band in a shorter time, resulting in a reduced overall sensing period. In addition to mitigating traffic congestion through data diversion from the cellular network, the proposed strategy facilitates the concurrent sensing of multiple channels by cD2DUs within the underutilised cellular user band. This leads to extended data transmission periods, increased network throughput, and effective offloading of the cellular network. The effectiveness of the proposed work is evaluated by considering factors, such as network throughput and transmission time. Simulation results confirm the effectiveness of the approach in improving spectrum utilisation and communication efficiency in multi-channel Cognitive D2D Networks (cD2DNs).</p>","PeriodicalId":51726,"journal":{"name":"IET Wireless Sensor Systems","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/wss2.12079","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Wireless Sensor Systems","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/wss2.12079","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The detection and characterisation of electromagnetic signals within a specific frequency range, known as spectrum sensing, plays a crucial role in Cognitive Radio Networks (CRNs). The CRNs aim to adapt their communication parameters to the surrounding radio environment, thereby improving the efficiency and utilisation of the available radio spectrum. Spectrum sensing is particularly important in device-to-device (D2D) communication when operating independently of the cellular network infrastructure. The Medium Access Control (MAC) protocol coordinates device communication and ensures interference-free operation of the CRN coexisting with the primary cellular network. A spectrum sensing strategy at the MAC layer for cognitive D2D communication. The strategy focuses on reducing the overall sensing period allocated at the MAC layer by having each Cognitive D2D User (cD2DU) sense a smaller subset of available channels while maintaining the same sensing time for cellular user detection at the physical layer. To achieve this, the concept of concurrent groups of D2D devices is introduced in proximity, which are formed by using unique IDs of cD2DUs during the device discovery stage. Each concurrent group senses a specific portion of the cellular user band in a shorter time, resulting in a reduced overall sensing period. In addition to mitigating traffic congestion through data diversion from the cellular network, the proposed strategy facilitates the concurrent sensing of multiple channels by cD2DUs within the underutilised cellular user band. This leads to extended data transmission periods, increased network throughput, and effective offloading of the cellular network. The effectiveness of the proposed work is evaluated by considering factors, such as network throughput and transmission time. Simulation results confirm the effectiveness of the approach in improving spectrum utilisation and communication efficiency in multi-channel Cognitive D2D Networks (cD2DNs).

Abstract Image

提高多通道认知设备到设备网络中的频谱感知效率:介质访问控制层策略与分析
在认知无线电网络(CRN)中,对特定频率范围内电磁信号的检测和特征描述(即频谱感知)起着至关重要的作用。认知无线电网络旨在使其通信参数适应周围的无线电环境,从而提高可用无线电频谱的效率和利用率。在独立于蜂窝网络基础设施运行的设备到设备(D2D)通信中,频谱感知尤为重要。介质访问控制(MAC)协议可协调设备通信,并确保与主蜂窝网络共存的 CRN 的无干扰运行。用于认知 D2D 通信的 MAC 层频谱感知策略。该策略的重点是通过让每个认知 D2D 用户(cD2DU)感知较小的可用信道子集来减少在 MAC 层分配的总体感知时间,同时在物理层为蜂窝用户检测保持相同的感知时间。为此,在设备发现阶段,通过使用 cD2DU 的唯一 ID,引入了 D2D 设备并发组的概念。每个并发组在较短时间内感知蜂窝用户频段的特定部分,从而缩短了总体感知时间。除了通过蜂窝网络的数据分流缓解流量拥塞外,建议的策略还有利于 cD2DU 在未充分利用的蜂窝用户频段内同时感测多个信道。这就延长了数据传输时间,提高了网络吞吐量,并有效地卸载了蜂窝网络。通过考虑网络吞吐量和传输时间等因素,对所提方法的有效性进行了评估。仿真结果证实了该方法在提高多通道认知 D2D 网络(cD2DN)的频谱利用率和通信效率方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IET Wireless Sensor Systems
IET Wireless Sensor Systems TELECOMMUNICATIONS-
CiteScore
4.90
自引率
5.30%
发文量
13
审稿时长
33 weeks
期刊介绍: IET Wireless Sensor Systems is aimed at the growing field of wireless sensor networks and distributed systems, which has been expanding rapidly in recent years and is evolving into a multi-billion dollar industry. The Journal has been launched to give a platform to researchers and academics in the field and is intended to cover the research, engineering, technological developments, innovative deployment of distributed sensor and actuator systems. Topics covered include, but are not limited to theoretical developments of: Innovative Architectures for Smart Sensors;Nano Sensors and Actuators Unstructured Networking; Cooperative and Clustering Distributed Sensors; Data Fusion for Distributed Sensors; Distributed Intelligence in Distributed Sensors; Energy Harvesting for and Lifetime of Smart Sensors and Actuators; Cross-Layer Design and Layer Optimisation in Distributed Sensors; Security, Trust and Dependability of Distributed Sensors. The Journal also covers; Innovative Services and Applications for: Monitoring: Health, Traffic, Weather and Toxins; Surveillance: Target Tracking and Localization; Observation: Global Resources and Geological Activities (Earth, Forest, Mines, Underwater); Industrial Applications of Distributed Sensors in Green and Agile Manufacturing; Sensor and RFID Applications of the Internet-of-Things ("IoT"); Smart Metering; Machine-to-Machine Communications.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信