All Solid Photonic Crystal Fiber Enabled by 3D Printing Fiber Technology for Sensing of Multiple Parameters

Yanhua Luo, Yushi Chu, Jiaying Wang, Xinghu Fu, John Canning, Yang Cao, Haoyu Pan, Yongxiang Zhang, Jianzhong Zhang, Binbin Yan, Jianxiang Wen, Tingyun Wang, Xiaohong Sun, Gang-Ding Peng
{"title":"All Solid Photonic Crystal Fiber Enabled by 3D Printing Fiber Technology for Sensing of Multiple Parameters","authors":"Yanhua Luo,&nbsp;Yushi Chu,&nbsp;Jiaying Wang,&nbsp;Xinghu Fu,&nbsp;John Canning,&nbsp;Yang Cao,&nbsp;Haoyu Pan,&nbsp;Yongxiang Zhang,&nbsp;Jianzhong Zhang,&nbsp;Binbin Yan,&nbsp;Jianxiang Wen,&nbsp;Tingyun Wang,&nbsp;Xiaohong Sun,&nbsp;Gang-Ding Peng","doi":"10.1002/adsr.202300205","DOIUrl":null,"url":null,"abstract":"<p>Using the flexibility and diversity of material and structure designs possible with 3D printing fiber technology, an all-solid photonic crystal fiber (PCF) is fabricated using borate (B<sub>2</sub>O<sub>3</sub>) doping. The geometry, material, and optical properties of this 3D printed PCF are characterized and analyzed using optical microscopy, scanning electron microscopy (SEM), fiber index profilometry, and Fourier transform infrared (FTIR) microscopy. Analysis demonstrates that B<sub>2</sub>O<sub>3</sub> doped in fabricated PCF has experienced evaporation leading to mass loss during drawing. In addition, there is no observable difference between the structure of substrate silica (SiO<sub>2</sub>) and the SiO<sub>2</sub> nanoparticles. However, microdomain differences may explain enhanced reflectance. Furthermore, a Mach–Zehnder interferometer (MZI) sensor is constructed with this 3D printed solid PCF and applied to temperature, refractive index, tensile force, and bending sensing. The specially designed 3D printed PCF has maximum temperature sensitivity up to Δ<i>λ</i>/Δ<i>T</i> ≈0.075 nm °C<sup>−1</sup>. When immersed in 76.34 wt.% glycerol-water solution, the sensitivity can be further improved. These results demonstrate that 3D printing fiber technology enables the custom fabrication of highly sensitive optical fiber sensors, increasing opportunities for the development of diverse and flexible sensors and devices for future internet-of-things (IoT) applications.</p>","PeriodicalId":100037,"journal":{"name":"Advanced Sensor Research","volume":"3 11","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adsr.202300205","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Sensor Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adsr.202300205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Using the flexibility and diversity of material and structure designs possible with 3D printing fiber technology, an all-solid photonic crystal fiber (PCF) is fabricated using borate (B2O3) doping. The geometry, material, and optical properties of this 3D printed PCF are characterized and analyzed using optical microscopy, scanning electron microscopy (SEM), fiber index profilometry, and Fourier transform infrared (FTIR) microscopy. Analysis demonstrates that B2O3 doped in fabricated PCF has experienced evaporation leading to mass loss during drawing. In addition, there is no observable difference between the structure of substrate silica (SiO2) and the SiO2 nanoparticles. However, microdomain differences may explain enhanced reflectance. Furthermore, a Mach–Zehnder interferometer (MZI) sensor is constructed with this 3D printed solid PCF and applied to temperature, refractive index, tensile force, and bending sensing. The specially designed 3D printed PCF has maximum temperature sensitivity up to ΔλT ≈0.075 nm °C−1. When immersed in 76.34 wt.% glycerol-water solution, the sensitivity can be further improved. These results demonstrate that 3D printing fiber technology enables the custom fabrication of highly sensitive optical fiber sensors, increasing opportunities for the development of diverse and flexible sensors and devices for future internet-of-things (IoT) applications.

Abstract Image

利用 3D 打印光纤技术实现全固态光子晶体光纤,用于传感多种参数
利用三维打印光纤技术在材料和结构设计方面的灵活性和多样性,采用掺杂硼酸盐(B2O3)的方法制造出了全固态光子晶体光纤(PCF)。利用光学显微镜、扫描电子显微镜 (SEM)、光纤索引轮廓仪和傅立叶变换红外 (FTIR) 显微镜对这种 3D 打印 PCF 的几何形状、材料和光学特性进行了表征和分析。分析表明,掺杂在制造的 PCF 中的 B2O3 在拉丝过程中发生了蒸发,导致质量损失。此外,基底二氧化硅(SiO2)和二氧化硅纳米颗粒的结构之间没有明显差异。不过,微域差异可能是反射率增强的原因。此外,还利用这种三维打印固体 PCF 构建了马赫-泽恩德干涉仪(MZI)传感器,并将其应用于温度、折射率、拉力和弯曲传感。专门设计的三维打印 PCF 的最大温度灵敏度可达 Δλ/ΔT ≈0.075 nm °C-1。当浸入重量百分比为 76.34 的甘油-水溶液中时,灵敏度可进一步提高。这些结果表明,3D 打印光纤技术能够定制制造高灵敏度光纤传感器,为未来物联网(IoT)应用领域开发多样化、灵活的传感器和设备提供了更多机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信