Lei Li, Xiaotao Wen, Chao Tang, Dongyong Zhou, Songgen Zhang
{"title":"Numerical simulation of acoustic waves propagation by finite element method based on optimized matrices","authors":"Lei Li, Xiaotao Wen, Chao Tang, Dongyong Zhou, Songgen Zhang","doi":"10.1093/jge/gxae055","DOIUrl":null,"url":null,"abstract":"\n Based on the wave equation, scholars worldwide have proposed various methods for numerical simulation of seismic wave propagation in underground and surface media. The finite element method offers a unique advantage in accurately depicting the undulating surfaces and steep palaeoburial hills with its triangular mesh. However, its computational efficiency cannot meet our needs while lots of memories are occupied. To address this, we optimized and improved the critical Mass matrix and Stiffness matrix of spatial discretization of the acoustic wave equation. We first fully utilized the flexibility of triangles to fit different undulating terrains, then reorganized the numbering of triangle mesh nodes and elements to reduce the bandwidth of the matrices, and then used optimized matrices for solving. The Crank-Nicolson scheme was adopted for time discretization, and the Perfectly Matched Layer condition was utilized to eliminate false waves reflected from the boundary. The numerical experiments with simple and significant fluctuation models proved that this method can accelerate computational efficiency while ensuring computational accuracy.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"8 4","pages":""},"PeriodicalIF":16.4000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1093/jge/gxae055","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Based on the wave equation, scholars worldwide have proposed various methods for numerical simulation of seismic wave propagation in underground and surface media. The finite element method offers a unique advantage in accurately depicting the undulating surfaces and steep palaeoburial hills with its triangular mesh. However, its computational efficiency cannot meet our needs while lots of memories are occupied. To address this, we optimized and improved the critical Mass matrix and Stiffness matrix of spatial discretization of the acoustic wave equation. We first fully utilized the flexibility of triangles to fit different undulating terrains, then reorganized the numbering of triangle mesh nodes and elements to reduce the bandwidth of the matrices, and then used optimized matrices for solving. The Crank-Nicolson scheme was adopted for time discretization, and the Perfectly Matched Layer condition was utilized to eliminate false waves reflected from the boundary. The numerical experiments with simple and significant fluctuation models proved that this method can accelerate computational efficiency while ensuring computational accuracy.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.