Research Status and Prospects of Ultrasonic Vibration-Assisted Joining Technology for Difficult-to-Weld High-Strength Alloys

IF 3.3 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yue Zhang, JianBiao Peng, Ruitao Peng, JiaChuan Jiang, Bei Lei, ChangHui Liao, ChangYou Xu
{"title":"Research Status and Prospects of Ultrasonic Vibration-Assisted Joining Technology for Difficult-to-Weld High-Strength Alloys","authors":"Yue Zhang,&nbsp;JianBiao Peng,&nbsp;Ruitao Peng,&nbsp;JiaChuan Jiang,&nbsp;Bei Lei,&nbsp;ChangHui Liao,&nbsp;ChangYou Xu","doi":"10.1007/s12540-024-01700-1","DOIUrl":null,"url":null,"abstract":"<div><p>Ultrasonic vibration-assisted joining technology has garnered significant attention in recent years, as it amalgamates the merits of conventional hot and cold joining techniques with ultrasonic vibration-assisted forming technology. It offers significant advantages in achieving advanced joining for difficult-to-weld high-strength alloy materials, improving the mechanical properties of conventional joining methods, and enhancing fatigue strength. Extensive research has been conducted by scholars on ultrasonic-assisted material forming and improving joining performance, which has found practical applications in the formation and joining of various difficult-to-weld high-strength alloys. The present paper provides a concise overview of the fundamental principles and historical development of ultrasonic vibration-assisted joining technology. The effects of various process parameters on ultrasonic vibration-assisted joining joints are also analyzed, and the latest techniques for ultrasonic vibration-assisted joining of several challenging-to-weld high-strength alloys are described. Furthermore, this study presents a comprehensive overview of the most recent advancements and emerging trends in finite element simulation techniques for ultrasonic vibration-assisted joining. The objective of this study is to provide a comprehensive reference for the investigation of ultrasonic vibration-assisted joining technology.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":703,"journal":{"name":"Metals and Materials International","volume":"30 11","pages":"2951 - 2970"},"PeriodicalIF":3.3000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metals and Materials International","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12540-024-01700-1","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Ultrasonic vibration-assisted joining technology has garnered significant attention in recent years, as it amalgamates the merits of conventional hot and cold joining techniques with ultrasonic vibration-assisted forming technology. It offers significant advantages in achieving advanced joining for difficult-to-weld high-strength alloy materials, improving the mechanical properties of conventional joining methods, and enhancing fatigue strength. Extensive research has been conducted by scholars on ultrasonic-assisted material forming and improving joining performance, which has found practical applications in the formation and joining of various difficult-to-weld high-strength alloys. The present paper provides a concise overview of the fundamental principles and historical development of ultrasonic vibration-assisted joining technology. The effects of various process parameters on ultrasonic vibration-assisted joining joints are also analyzed, and the latest techniques for ultrasonic vibration-assisted joining of several challenging-to-weld high-strength alloys are described. Furthermore, this study presents a comprehensive overview of the most recent advancements and emerging trends in finite element simulation techniques for ultrasonic vibration-assisted joining. The objective of this study is to provide a comprehensive reference for the investigation of ultrasonic vibration-assisted joining technology.

Graphical abstract

Abstract Image

Abstract Image

难焊高强度合金超声波振动辅助连接技术的研究现状与展望
超声波振动辅助连接技术融合了传统冷热连接技术和超声波振动辅助成型技术的优点,近年来备受关注。它在实现难焊接高强度合金材料的先进连接、改善传统连接方法的机械性能以及提高疲劳强度方面具有明显优势。学者们对超声波辅助材料成形和改善连接性能进行了广泛的研究,并在各种难焊接高强度合金的成形和连接中得到了实际应用。本文简要概述了超声振动辅助连接技术的基本原理和历史发展。本文还分析了各种工艺参数对超声波振动辅助连接接头的影响,并介绍了超声波振动辅助连接几种难焊接高强度合金的最新技术。此外,本研究还全面概述了超声波振动辅助连接有限元模拟技术的最新进展和新兴趋势。本研究旨在为超声波振动辅助焊接技术的研究提供全面的参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Metals and Materials International
Metals and Materials International 工程技术-材料科学:综合
CiteScore
7.10
自引率
8.60%
发文量
197
审稿时长
3.7 months
期刊介绍: Metals and Materials International publishes original papers and occasional critical reviews on all aspects of research and technology in materials engineering: physical metallurgy, materials science, and processing of metals and other materials. Emphasis is placed on those aspects of the science of materials that are concerned with the relationships among the processing, structure and properties (mechanical, chemical, electrical, electrochemical, magnetic and optical) of materials. Aspects of processing include the melting, casting, and fabrication with the thermodynamics, kinetics and modeling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信