M. Shanmugam, Nithish Agamendran, Karthikeyan Sekar
{"title":"Efficient Charge Transfer of p-n Heterojunction UiO-66-NH2/CuFe2O4 Composite for Photocatalytic Hydrogen Production","authors":"M. Shanmugam, Nithish Agamendran, Karthikeyan Sekar","doi":"10.3390/catal14060341","DOIUrl":null,"url":null,"abstract":"Using a p-n heterojunction is one of the efficient methods to increase charge transfer in photocatalysis applications. So, herein, p-type UiO-66 (NH2) and n-type CuFe2O4 (CFO) are used to form an effective p-n heterojunction. Due to their poor charge separation in their pristine form, both UiO-66 (NH2) and CFO materials cannot produce hydrogen; however, the composite p-n heterojunction formed between these materials makes fast charge separation and so hydrogen is efficiently produced. The optimized catalyst UCFO 25% produces a maximum of 62.5 µmol/g/h hydrogen in an aqueous methanol solution. The formation of a p-n heterojunction is confirmed by Mott–Schottky analysis and optical properties, crystallinity and the local atomic environment of the material was analyzed by various analytical tools like UV-Vis spectroscopy, XRD, and XANES.","PeriodicalId":9794,"journal":{"name":"Catalysts","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysts","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/catal14060341","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Using a p-n heterojunction is one of the efficient methods to increase charge transfer in photocatalysis applications. So, herein, p-type UiO-66 (NH2) and n-type CuFe2O4 (CFO) are used to form an effective p-n heterojunction. Due to their poor charge separation in their pristine form, both UiO-66 (NH2) and CFO materials cannot produce hydrogen; however, the composite p-n heterojunction formed between these materials makes fast charge separation and so hydrogen is efficiently produced. The optimized catalyst UCFO 25% produces a maximum of 62.5 µmol/g/h hydrogen in an aqueous methanol solution. The formation of a p-n heterojunction is confirmed by Mott–Schottky analysis and optical properties, crystallinity and the local atomic environment of the material was analyzed by various analytical tools like UV-Vis spectroscopy, XRD, and XANES.
期刊介绍:
Catalysts (ISSN 2073-4344) is an international open access journal of catalysts and catalyzed reactions. Catalysts publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.