Yu-Tung Pai, Nien-En Sun, Cheng-Te Li, Shou-de Lin
{"title":"Incremental Data Drifting: Evaluation Metrics, Data Generation, and Approach Comparison","authors":"Yu-Tung Pai, Nien-En Sun, Cheng-Te Li, Shou-de Lin","doi":"10.1145/3655630","DOIUrl":null,"url":null,"abstract":"Incremental data drifting is a common problem when employing a machine-learning model in industrial applications. The underlying data distribution evolves gradually, e.g., users change their buying preferences on an E-commerce website over time. The problem needs to be addressed to obtain high performance. Right now, studies regarding incremental data drifting suffer from several issues. For one thing, there is a lack of clear-defined incremental drift datasets for examination. Existing efforts use either collected real datasets or synthetic datasets that show two obvious limitations. One is in particular when and of which type of drifts the distribution undergoes is unknown, and the other is that a simple synthesized dataset cannot reflect the complex representation we would normally face in the real world. For another, there lacks of a well-defined protocol to evaluate a learner’s knowledge transfer capability on an incremental drift dataset. To provide a holistic discussion on these issues, we create approaches to generate datasets with specific drift types, and define a novel protocol for evaluation. Besides, we investigate recent advances in the transfer learning field, including Domain Adaptation and Lifelong Learning, and examine how they perform in the presence of incremental data drifting. The results unfold the relationships among drift types, knowledge preservation, and learning approaches.","PeriodicalId":7,"journal":{"name":"ACS Applied Polymer Materials","volume":"9 8","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Polymer Materials","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3655630","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Incremental data drifting is a common problem when employing a machine-learning model in industrial applications. The underlying data distribution evolves gradually, e.g., users change their buying preferences on an E-commerce website over time. The problem needs to be addressed to obtain high performance. Right now, studies regarding incremental data drifting suffer from several issues. For one thing, there is a lack of clear-defined incremental drift datasets for examination. Existing efforts use either collected real datasets or synthetic datasets that show two obvious limitations. One is in particular when and of which type of drifts the distribution undergoes is unknown, and the other is that a simple synthesized dataset cannot reflect the complex representation we would normally face in the real world. For another, there lacks of a well-defined protocol to evaluate a learner’s knowledge transfer capability on an incremental drift dataset. To provide a holistic discussion on these issues, we create approaches to generate datasets with specific drift types, and define a novel protocol for evaluation. Besides, we investigate recent advances in the transfer learning field, including Domain Adaptation and Lifelong Learning, and examine how they perform in the presence of incremental data drifting. The results unfold the relationships among drift types, knowledge preservation, and learning approaches.
期刊介绍:
ACS Applied Polymer Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics, and biology relevant to applications of polymers.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates fundamental knowledge in the areas of materials, engineering, physics, bioscience, polymer science and chemistry into important polymer applications. The journal is specifically interested in work that addresses relationships among structure, processing, morphology, chemistry, properties, and function as well as work that provide insights into mechanisms critical to the performance of the polymer for applications.