Guillaume Aubrun, Kenneth R. Davidson, Alexander Müller-Hermes, Vern I. Paulsen, Mizanur Rahaman
{"title":"Completely bounded norms of \n \n k\n $k$\n -positive maps","authors":"Guillaume Aubrun, Kenneth R. Davidson, Alexander Müller-Hermes, Vern I. Paulsen, Mizanur Rahaman","doi":"10.1112/jlms.12936","DOIUrl":null,"url":null,"abstract":"<p>Given an operator system <span></span><math>\n <semantics>\n <mi>S</mi>\n <annotation>$\\mathcal {S}$</annotation>\n </semantics></math>, we define the parameters <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>r</mi>\n <mi>k</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>S</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$r_k(\\mathcal {S})$</annotation>\n </semantics></math> (resp. <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>d</mi>\n <mi>k</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>S</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$d_k(\\mathcal {S})$</annotation>\n </semantics></math>) defined as the maximal value of the completely bounded norm of a unital <span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>$k$</annotation>\n </semantics></math>-positive map from an arbitrary operator system into <span></span><math>\n <semantics>\n <mi>S</mi>\n <annotation>$\\mathcal {S}$</annotation>\n </semantics></math> (resp. from <span></span><math>\n <semantics>\n <mi>S</mi>\n <annotation>$\\mathcal {S}$</annotation>\n </semantics></math> into an arbitrary operator system). In the case of the matrix algebras <span></span><math>\n <semantics>\n <msub>\n <mi>M</mi>\n <mi>n</mi>\n </msub>\n <annotation>$\\mathsf {M}_n$</annotation>\n </semantics></math>, for <span></span><math>\n <semantics>\n <mrow>\n <mn>1</mn>\n <mo>⩽</mo>\n <mi>k</mi>\n <mo>⩽</mo>\n <mi>n</mi>\n </mrow>\n <annotation>$1 \\leqslant k \\leqslant n$</annotation>\n </semantics></math>, we compute the exact value <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>r</mi>\n <mi>k</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>M</mi>\n <mi>n</mi>\n </msub>\n <mo>)</mo>\n </mrow>\n <mo>=</mo>\n <mfrac>\n <mrow>\n <mn>2</mn>\n <mi>n</mi>\n <mo>−</mo>\n <mi>k</mi>\n </mrow>\n <mi>k</mi>\n </mfrac>\n </mrow>\n <annotation>$r_k(\\mathsf {M}_n) = \\frac{2n-k}{k}$</annotation>\n </semantics></math> and show upper and lower bounds on the parameters <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>d</mi>\n <mi>k</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>M</mi>\n <mi>n</mi>\n </msub>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$d_k(\\mathsf {M}_n)$</annotation>\n </semantics></math>. Moreover, when <span></span><math>\n <semantics>\n <mi>S</mi>\n <annotation>$\\mathcal {S}$</annotation>\n </semantics></math> is a finite-dimensional operator system, adapting results of Passer and the fourth author [J. Operator Theory 85 (2021), no. 2, 547–568], we show that the sequence <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>r</mi>\n <mi>k</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>S</mi>\n <mo>)</mo>\n </mrow>\n <mo>)</mo>\n </mrow>\n <annotation>$(r_k(\\mathcal {S}))$</annotation>\n </semantics></math> tends to 1 if and only if <span></span><math>\n <semantics>\n <mi>S</mi>\n <annotation>$\\mathcal {S}$</annotation>\n </semantics></math> is exact and that the sequence <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>d</mi>\n <mi>k</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>S</mi>\n <mo>)</mo>\n </mrow>\n <mo>)</mo>\n </mrow>\n <annotation>$(d_k(\\mathcal {S}))$</annotation>\n </semantics></math> tends to 1 if and only if <span></span><math>\n <semantics>\n <mi>S</mi>\n <annotation>$\\mathcal {S}$</annotation>\n </semantics></math> has the lifting property.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.12936","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Given an operator system , we define the parameters (resp. ) defined as the maximal value of the completely bounded norm of a unital -positive map from an arbitrary operator system into (resp. from into an arbitrary operator system). In the case of the matrix algebras , for , we compute the exact value and show upper and lower bounds on the parameters . Moreover, when is a finite-dimensional operator system, adapting results of Passer and the fourth author [J. Operator Theory 85 (2021), no. 2, 547–568], we show that the sequence tends to 1 if and only if is exact and that the sequence tends to 1 if and only if has the lifting property.
给定一个算子系统 S $\mathcal {S}$ ,我们定义参数 r k ( S ) $r_k(\mathcal {S})$ (或者 d k ( S ) $d_k(\mathcal {S})$ ),定义为从一个任意算子系统到 S $\mathcal {S}$ (或者从 S $\mathcal {S}$ 到一个任意算子系统)的单一 k $k$ 正映射的完全有界规范的最大值。在矩阵代数 M n $\mathsf {M}_n$ 的情况下,对于 1 ⩽ k ⩽ n $1 \leqslant k \leqslant n$ ,我们计算了精确值 r k ( M n ) = 2 n - k k $r_k(\mathsf {M}_n) = \frac{2n-k}{k}$ 并给出了参数 d k ( M n ) $d_k(\mathsf {M}_n)$ 的上界和下界。此外,当 S $\mathcal {S}$ 是有限维算子系统时,根据 Passer 和第四作者的结果 [J. Operator Theory 85 (2021), no.2, 547-568] 时,我们证明只有当 S $\mathcal {S}$ 是精确的,序列 ( r k ( S ) ) $(r_k(\mathcal {S}))$ 才会趋向于 1;只有当 S $\mathcal {S}$ 具有提升性质时,序列 ( d k ( S ) ) $(d_k(\mathcal {S}))$ 才会趋向于 1。
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.