Completely bounded norms of k $k$ -positive maps

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Guillaume Aubrun, Kenneth R. Davidson, Alexander Müller-Hermes, Vern I. Paulsen, Mizanur Rahaman
{"title":"Completely bounded norms of \n \n k\n $k$\n -positive maps","authors":"Guillaume Aubrun,&nbsp;Kenneth R. Davidson,&nbsp;Alexander Müller-Hermes,&nbsp;Vern I. Paulsen,&nbsp;Mizanur Rahaman","doi":"10.1112/jlms.12936","DOIUrl":null,"url":null,"abstract":"<p>Given an operator system <span></span><math>\n <semantics>\n <mi>S</mi>\n <annotation>$\\mathcal {S}$</annotation>\n </semantics></math>, we define the parameters <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>r</mi>\n <mi>k</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>S</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$r_k(\\mathcal {S})$</annotation>\n </semantics></math> (resp. <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>d</mi>\n <mi>k</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>S</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$d_k(\\mathcal {S})$</annotation>\n </semantics></math>) defined as the maximal value of the completely bounded norm of a unital <span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>$k$</annotation>\n </semantics></math>-positive map from an arbitrary operator system into <span></span><math>\n <semantics>\n <mi>S</mi>\n <annotation>$\\mathcal {S}$</annotation>\n </semantics></math> (resp. from <span></span><math>\n <semantics>\n <mi>S</mi>\n <annotation>$\\mathcal {S}$</annotation>\n </semantics></math> into an arbitrary operator system). In the case of the matrix algebras <span></span><math>\n <semantics>\n <msub>\n <mi>M</mi>\n <mi>n</mi>\n </msub>\n <annotation>$\\mathsf {M}_n$</annotation>\n </semantics></math>, for <span></span><math>\n <semantics>\n <mrow>\n <mn>1</mn>\n <mo>⩽</mo>\n <mi>k</mi>\n <mo>⩽</mo>\n <mi>n</mi>\n </mrow>\n <annotation>$1 \\leqslant k \\leqslant n$</annotation>\n </semantics></math>, we compute the exact value <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>r</mi>\n <mi>k</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>M</mi>\n <mi>n</mi>\n </msub>\n <mo>)</mo>\n </mrow>\n <mo>=</mo>\n <mfrac>\n <mrow>\n <mn>2</mn>\n <mi>n</mi>\n <mo>−</mo>\n <mi>k</mi>\n </mrow>\n <mi>k</mi>\n </mfrac>\n </mrow>\n <annotation>$r_k(\\mathsf {M}_n) = \\frac{2n-k}{k}$</annotation>\n </semantics></math> and show upper and lower bounds on the parameters <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>d</mi>\n <mi>k</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>M</mi>\n <mi>n</mi>\n </msub>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$d_k(\\mathsf {M}_n)$</annotation>\n </semantics></math>. Moreover, when <span></span><math>\n <semantics>\n <mi>S</mi>\n <annotation>$\\mathcal {S}$</annotation>\n </semantics></math> is a finite-dimensional operator system, adapting results of Passer and the fourth author [J. Operator Theory 85 (2021), no. 2, 547–568], we show that the sequence <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>r</mi>\n <mi>k</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>S</mi>\n <mo>)</mo>\n </mrow>\n <mo>)</mo>\n </mrow>\n <annotation>$(r_k(\\mathcal {S}))$</annotation>\n </semantics></math> tends to 1 if and only if <span></span><math>\n <semantics>\n <mi>S</mi>\n <annotation>$\\mathcal {S}$</annotation>\n </semantics></math> is exact and that the sequence <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>d</mi>\n <mi>k</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>S</mi>\n <mo>)</mo>\n </mrow>\n <mo>)</mo>\n </mrow>\n <annotation>$(d_k(\\mathcal {S}))$</annotation>\n </semantics></math> tends to 1 if and only if <span></span><math>\n <semantics>\n <mi>S</mi>\n <annotation>$\\mathcal {S}$</annotation>\n </semantics></math> has the lifting property.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.12936","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Given an operator system S $\mathcal {S}$ , we define the parameters r k ( S ) $r_k(\mathcal {S})$ (resp. d k ( S ) $d_k(\mathcal {S})$ ) defined as the maximal value of the completely bounded norm of a unital k $k$ -positive map from an arbitrary operator system into S $\mathcal {S}$ (resp. from S $\mathcal {S}$ into an arbitrary operator system). In the case of the matrix algebras M n $\mathsf {M}_n$ , for 1 k n $1 \leqslant k \leqslant n$ , we compute the exact value r k ( M n ) = 2 n k k $r_k(\mathsf {M}_n) = \frac{2n-k}{k}$ and show upper and lower bounds on the parameters d k ( M n ) $d_k(\mathsf {M}_n)$ . Moreover, when S $\mathcal {S}$ is a finite-dimensional operator system, adapting results of Passer and the fourth author [J. Operator Theory 85 (2021), no. 2, 547–568], we show that the sequence ( r k ( S ) ) $(r_k(\mathcal {S}))$ tends to 1 if and only if S $\mathcal {S}$ is exact and that the sequence ( d k ( S ) ) $(d_k(\mathcal {S}))$ tends to 1 if and only if S $\mathcal {S}$ has the lifting property.

k $k$ 正映射的完全有界规范
给定一个算子系统 S $\mathcal {S}$ ,我们定义参数 r k ( S ) $r_k(\mathcal {S})$ (或者 d k ( S ) $d_k(\mathcal {S})$ ),定义为从一个任意算子系统到 S $\mathcal {S}$ (或者从 S $\mathcal {S}$ 到一个任意算子系统)的单一 k $k$ 正映射的完全有界规范的最大值。在矩阵代数 M n $\mathsf {M}_n$ 的情况下,对于 1 ⩽ k ⩽ n $1 \leqslant k \leqslant n$ ,我们计算了精确值 r k ( M n ) = 2 n - k k $r_k(\mathsf {M}_n) = \frac{2n-k}{k}$ 并给出了参数 d k ( M n ) $d_k(\mathsf {M}_n)$ 的上界和下界。此外,当 S $\mathcal {S}$ 是有限维算子系统时,根据 Passer 和第四作者的结果 [J. Operator Theory 85 (2021), no.2, 547-568] 时,我们证明只有当 S $\mathcal {S}$ 是精确的,序列 ( r k ( S ) ) $(r_k(\mathcal {S}))$ 才会趋向于 1;只有当 S $\mathcal {S}$ 具有提升性质时,序列 ( d k ( S ) ) $(d_k(\mathcal {S}))$ 才会趋向于 1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信