A mathematical theory of the critical point of ferromagnetic Ising systems

IF 23.9 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Domingos H.U. Marchetti , Manfred Requardt , Walter F. Wreszinski
{"title":"A mathematical theory of the critical point of ferromagnetic Ising systems","authors":"Domingos H.U. Marchetti ,&nbsp;Manfred Requardt ,&nbsp;Walter F. Wreszinski","doi":"10.1016/j.physrep.2024.05.006","DOIUrl":null,"url":null,"abstract":"<div><p>We develop a theory of the critical point of the ferromagnetic Ising model, whose basic objects are the ergodic (pure) states of the infinite system. It proves the existence of anomalous critical fluctuations, for dimension <span><math><mrow><mi>ν</mi><mo>=</mo><mn>2</mn></mrow></math></span> and, under a standard assumption, for <span><math><mrow><mi>ν</mi><mo>=</mo><mn>3</mn></mrow></math></span>, for the model with nearest-neighbor interaction, in a way which is consistent with the probabilistic approach of Cassandro, Jona-Lasinio, and several others, reviewed in Jona-Lasinio’s article in Phys. Rep. 352,439 (2001). We propose to single out the state at the critical temperature <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span>, among the ergodic thermal states associated to temperatures <span><math><mrow><mn>0</mn><mo>≤</mo><mi>T</mi><mo>≤</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>c</mi></mrow></msub></mrow></math></span>, by a condition of non-summable clustering of the connected two-point function. The analogous condition on the connected (2r)- point functions, for <span><math><mrow><mi>r</mi><mo>≥</mo><mn>2</mn></mrow></math></span> , together with a scaling hypothesis, natural within our framework, proves that the (macroscopic) fluctuation state is quasi-free, after a proper rescaling, also at the critical temperature, in agreement with a theorem by Cassandro and Jona-Lasinio, whose proof is, however, shown to be incomplete. Other subjects treated include topics relating to universality, including spontaneous breaking of continuous symmetries and violations of universality in problems of energetic and dynamic stability.</p></div>","PeriodicalId":404,"journal":{"name":"Physics Reports","volume":"1079 ","pages":"Pages 1-32"},"PeriodicalIF":23.9000,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Reports","FirstCategoryId":"4","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0370157324001662","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We develop a theory of the critical point of the ferromagnetic Ising model, whose basic objects are the ergodic (pure) states of the infinite system. It proves the existence of anomalous critical fluctuations, for dimension ν=2 and, under a standard assumption, for ν=3, for the model with nearest-neighbor interaction, in a way which is consistent with the probabilistic approach of Cassandro, Jona-Lasinio, and several others, reviewed in Jona-Lasinio’s article in Phys. Rep. 352,439 (2001). We propose to single out the state at the critical temperature Tc, among the ergodic thermal states associated to temperatures 0TTc, by a condition of non-summable clustering of the connected two-point function. The analogous condition on the connected (2r)- point functions, for r2 , together with a scaling hypothesis, natural within our framework, proves that the (macroscopic) fluctuation state is quasi-free, after a proper rescaling, also at the critical temperature, in agreement with a theorem by Cassandro and Jona-Lasinio, whose proof is, however, shown to be incomplete. Other subjects treated include topics relating to universality, including spontaneous breaking of continuous symmetries and violations of universality in problems of energetic and dynamic stability.

铁磁伊辛系统临界点的数学理论
我们提出了铁磁伊辛模型临界点理论,其基本对象是无限系统的遍历(纯)态。它证明了反常临界波动的存在:在维度 ν=2 的情况下,以及在标准假设下,在 ν=3 的情况下,对于具有近邻相互作用的模型,其方法与卡桑德罗、约纳-拉西尼奥和其他几位学者的概率方法一致,约纳-拉西尼奥在《物理学报》352,439(2001)上发表的文章对此进行了评论。我们建议,在与温度 0≤T≤Tc 相关的遍历热状态中,通过连通两点函数的非相加聚类条件,将临界温度 Tc 下的状态单列出来。对于 r≥2 的连通 (2r)- 点函数的类似条件,加上我们框架内自然的缩放假设,证明了在临界温度下,经过适当的重缩放后,(宏观)波动态也是准自由的,这与卡桑德罗和约纳-拉西尼奥的定理一致,不过,他们的证明并不完整。所讨论的其他主题包括与普遍性有关的课题,包括连续对称性的自发破缺以及能量和动态稳定性问题中普遍性的违反。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physics Reports
Physics Reports 物理-物理:综合
CiteScore
56.10
自引率
0.70%
发文量
102
审稿时长
9.1 weeks
期刊介绍: Physics Reports keeps the active physicist up-to-date on developments in a wide range of topics by publishing timely reviews which are more extensive than just literature surveys but normally less than a full monograph. Each report deals with one specific subject and is generally published in a separate volume. These reviews are specialist in nature but contain enough introductory material to make the main points intelligible to a non-specialist. The reader will not only be able to distinguish important developments and trends in physics but will also find a sufficient number of references to the original literature.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信