{"title":"Experiment study on focusing pattern prediction of particles in asymmetric contraction-expansion array channel.","authors":"Xin Shi, Qing He, Wei Tan, Yuwen Lu, Guorui Zhu","doi":"10.1002/elps.202400042","DOIUrl":null,"url":null,"abstract":"<p><p>Contraction-expansion array (CEA) microchannel is a typical structure applied on particle/cell manipulation. The prediction of the particle focusing pattern in CEA microchannel is worthwhile to be investigate deeply. Here, we demonstrated a virtual boundary method by flow field analysis and theoretical derivation. The calculating method of the virtual boundary location, related to the Reynolds number (R<sub>e</sub>) and the structure parameter R<sub>W</sub>, was proposed. Combining the approximate Poiseuille flow pattern based on the virtual boundary method with the simulation results of Dean flow, the main line pattern and the main/lateral lines pattern were predicted and validated in experiments. The transformation from the main line pattern to the main/lateral lines pattern can be facilitated by increasing R<sub>e</sub>, decreasing R<sub>W</sub> <sub>,</sub> and decreasing α. An empirical formula was derived to characterize the critical condition of the transformation. The virtual boundary method can provide a guidance for asymmetric CEA channel design and contribute to the widespread application of microfluidic particle focusing.</p>","PeriodicalId":11596,"journal":{"name":"ELECTROPHORESIS","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ELECTROPHORESIS","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/elps.202400042","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Contraction-expansion array (CEA) microchannel is a typical structure applied on particle/cell manipulation. The prediction of the particle focusing pattern in CEA microchannel is worthwhile to be investigate deeply. Here, we demonstrated a virtual boundary method by flow field analysis and theoretical derivation. The calculating method of the virtual boundary location, related to the Reynolds number (Re) and the structure parameter RW, was proposed. Combining the approximate Poiseuille flow pattern based on the virtual boundary method with the simulation results of Dean flow, the main line pattern and the main/lateral lines pattern were predicted and validated in experiments. The transformation from the main line pattern to the main/lateral lines pattern can be facilitated by increasing Re, decreasing RW, and decreasing α. An empirical formula was derived to characterize the critical condition of the transformation. The virtual boundary method can provide a guidance for asymmetric CEA channel design and contribute to the widespread application of microfluidic particle focusing.
收缩膨胀阵列(CEA)微通道是一种应用于粒子/细胞操作的典型结构。如何预测粒子在 CEA 微通道中的聚焦模式值得深入研究。在此,我们通过流场分析和理论推导证明了一种虚拟边界方法。提出了与雷诺数(Re)和结构参数 RW 相关的虚拟边界位置计算方法。将基于虚拟边界法的近似普瓦赛流模式与迪恩流的模拟结果相结合,预测出了主线模式和主/侧线模式,并在实验中进行了验证。通过增加 Re 值、减小 RW 值和减小 α 值,可促进主线模式向主/侧线模式的转变。推导出了一个经验公式来描述转变的临界条件。虚拟边界法可为非对称 CEA 通道设计提供指导,有助于微流体粒子聚焦技术的广泛应用。
期刊介绍:
ELECTROPHORESIS is an international journal that publishes original manuscripts on all aspects of electrophoresis, and liquid phase separations (e.g., HPLC, micro- and nano-LC, UHPLC, micro- and nano-fluidics, liquid-phase micro-extractions, etc.).
Topics include new or improved analytical and preparative methods, sample preparation, development of theory, and innovative applications of electrophoretic and liquid phase separations methods in the study of nucleic acids, proteins, carbohydrates natural products, pharmaceuticals, food analysis, environmental species and other compounds of importance to the life sciences.
Papers in the areas of microfluidics and proteomics, which are not limited to electrophoresis-based methods, will also be accepted for publication. Contributions focused on hyphenated and omics techniques are also of interest. Proteomics is within the scope, if related to its fundamentals and new technical approaches. Proteomics applications are only considered in particular cases.
Papers describing the application of standard electrophoretic methods will not be considered.
Papers on nanoanalysis intended for publication in ELECTROPHORESIS should focus on one or more of the following topics:
• Nanoscale electrokinetics and phenomena related to electric double layer and/or confinement in nano-sized geometry
• Single cell and subcellular analysis
• Nanosensors and ultrasensitive detection aspects (e.g., involving quantum dots, "nanoelectrodes" or nanospray MS)
• Nanoscale/nanopore DNA sequencing (next generation sequencing)
• Micro- and nanoscale sample preparation
• Nanoparticles and cells analyses by dielectrophoresis
• Separation-based analysis using nanoparticles, nanotubes and nanowires.