Continuous CO synthesis from ambient air by integrating direct air capture and direct carbonate reduction using an alkaline CO2-absorbing electrolyte operating at room temperature

Yoshiyuki Sakamoto , Yusaku Nishimura , Yohsuke Mizutani , Shintaro Mizuno , Ryo Hishinuma , Kazumasa Okamura , Yasuhiko Takeda , Masaoki Iwasaki
{"title":"Continuous CO synthesis from ambient air by integrating direct air capture and direct carbonate reduction using an alkaline CO2-absorbing electrolyte operating at room temperature","authors":"Yoshiyuki Sakamoto ,&nbsp;Yusaku Nishimura ,&nbsp;Yohsuke Mizutani ,&nbsp;Shintaro Mizuno ,&nbsp;Ryo Hishinuma ,&nbsp;Kazumasa Okamura ,&nbsp;Yasuhiko Takeda ,&nbsp;Masaoki Iwasaki","doi":"10.1016/j.ccst.2024.100225","DOIUrl":null,"url":null,"abstract":"<div><p>We constructed an integrated system comprising direct air capture (DAC) and direct carbonate reduction (DCR) to facilitate the industrial implementation of negative CO<sub>2</sub> emissions. The DAC-DCR system demonstrated continuous CO synthesis from ambient air at room temperature, in contrast to conventional methods, including high-temperature processes and previously reported a batch-type method that connect DAC and DCR. The CO<sub>2</sub>-absorbing electrolyte, a K<sub>2</sub>CO<sub>3</sub>-KHCO<sub>3</sub> aqueous solution, is circulated between the DAC and DCR subsystems. The CO<sub>2</sub> captured from the air with the CO<sub>2</sub>-absorbing electrolyte is converted to carbonate in the DAC; subsequently, the carbonate is electrochemically reduced to CO in the DCR. This system monitored the CO<sub>2</sub> capture rate, carbonate reduction rate, and pH of the CO<sub>2</sub>-absorbing electrolyte in real time. Controlling the carbonate reduction rate by adjusting the DCR reactor current enabled the balancing of carbon capture and carbonate reduction rates. Consequently, stable and continuous operation of a DAC-DCR system was achieved for over one hour for the first time. The DAC-DCR is more suitable for combination with intermittent renewable electricity, including photovoltaic and wind electricity, than the previous methods because all the processes in the system work at room temperature. Thus, the present proof-of-concept study is an important step toward the widespread use of DAC.</p></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S277265682400037X/pdfft?md5=5c474985842463abe65588a22072ccf8&pid=1-s2.0-S277265682400037X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Capture Science & Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S277265682400037X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We constructed an integrated system comprising direct air capture (DAC) and direct carbonate reduction (DCR) to facilitate the industrial implementation of negative CO2 emissions. The DAC-DCR system demonstrated continuous CO synthesis from ambient air at room temperature, in contrast to conventional methods, including high-temperature processes and previously reported a batch-type method that connect DAC and DCR. The CO2-absorbing electrolyte, a K2CO3-KHCO3 aqueous solution, is circulated between the DAC and DCR subsystems. The CO2 captured from the air with the CO2-absorbing electrolyte is converted to carbonate in the DAC; subsequently, the carbonate is electrochemically reduced to CO in the DCR. This system monitored the CO2 capture rate, carbonate reduction rate, and pH of the CO2-absorbing electrolyte in real time. Controlling the carbonate reduction rate by adjusting the DCR reactor current enabled the balancing of carbon capture and carbonate reduction rates. Consequently, stable and continuous operation of a DAC-DCR system was achieved for over one hour for the first time. The DAC-DCR is more suitable for combination with intermittent renewable electricity, including photovoltaic and wind electricity, than the previous methods because all the processes in the system work at room temperature. Thus, the present proof-of-concept study is an important step toward the widespread use of DAC.

Abstract Image

利用碱性二氧化碳吸收电解质在室温下运行,通过整合直接空气捕获和直接碳酸盐还原,从环境空气中连续合成二氧化碳
我们构建了一个由直接空气捕集(DAC)和直接碳酸盐还原(DCR)组成的集成系统,以促进二氧化碳负排放的工业化实施。与包括高温工艺在内的传统方法以及之前报道的连接 DAC 和 DCR 的批量型方法相比,DAC-DCR 系统展示了在室温下从环境空气中连续合成二氧化碳的过程。二氧化碳吸收电解液是一种 K2CO3-KHCO3 水溶液,在 DAC 和 DCR 子系统之间循环。利用二氧化碳吸收电解液从空气中捕获的二氧化碳在 DAC 中转化为碳酸盐;随后,碳酸盐在 DCR 中通过电化学还原为二氧化碳。该系统实时监测二氧化碳捕获率、碳酸盐还原率和二氧化碳吸收电解液的 pH 值。通过调节 DCR 反应器电流来控制碳酸盐还原率,从而平衡碳捕获率和碳酸盐还原率。因此,DAC-DCR 系统首次实现了超过一小时的稳定连续运行。与之前的方法相比,DAC-DCR 更适合与间歇性可再生能源发电(包括光伏发电和风力发电)相结合,因为系统中的所有过程都是在室温下进行的。因此,本概念验证研究是朝着广泛使用 DAC 迈出的重要一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信