An exact algorithm for two-dimensional cutting problems based on multi-level pattern

IF 2.5 4区 计算机科学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Weiping Pan
{"title":"An exact algorithm for two-dimensional cutting problems based on multi-level pattern","authors":"Weiping Pan","doi":"10.1016/j.gmod.2024.101220","DOIUrl":null,"url":null,"abstract":"<div><p>A multi-level pattern is proposed for the unconstrained two-dimensional cutting problems of rectangular items, and an exact generation algorithm is constructed. The arrangement of rectangular items with the same type in multiple rows and columns is referred to as a 0-level pattern. An <em>n</em>-level pattern is the horizontal or vertical combination of an <em>n</em>-1 level pattern with a pattern whose level will not exceed <em>n</em>-1. The generation algorithm of multi-level pattern is constructed on the base of dynamic programming, and the multi-level patterns with various sizes are generated with increased level order. The normal size is chosen to reduce unnecessary computation in the algorithm. Three sets of benchmark instances and one set of random production instance from the literatures are used for comparison. Comparing to the exact algorithm in the literature, the results in this paper are equivalent, but the computation time is shorter. Comparing to heuristic algorithms in literatures, the results in this paper are better and the computation time is still good enough for practical applications.</p></div>","PeriodicalId":55083,"journal":{"name":"Graphical Models","volume":"133 ","pages":"Article 101220"},"PeriodicalIF":2.5000,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1524070324000080/pdfft?md5=7ba46c24bfd0defb95fae7879ef5f757&pid=1-s2.0-S1524070324000080-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graphical Models","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1524070324000080","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

A multi-level pattern is proposed for the unconstrained two-dimensional cutting problems of rectangular items, and an exact generation algorithm is constructed. The arrangement of rectangular items with the same type in multiple rows and columns is referred to as a 0-level pattern. An n-level pattern is the horizontal or vertical combination of an n-1 level pattern with a pattern whose level will not exceed n-1. The generation algorithm of multi-level pattern is constructed on the base of dynamic programming, and the multi-level patterns with various sizes are generated with increased level order. The normal size is chosen to reduce unnecessary computation in the algorithm. Three sets of benchmark instances and one set of random production instance from the literatures are used for comparison. Comparing to the exact algorithm in the literature, the results in this paper are equivalent, but the computation time is shorter. Comparing to heuristic algorithms in literatures, the results in this paper are better and the computation time is still good enough for practical applications.

基于多级模式的二维切割问题精确算法
针对矩形物品的无约束二维切割问题,提出了一种多层次模式,并构建了精确的生成算法。同一类型的矩形物品在多行和多列中的排列称为 0 级模式。n 级模式是 n-1 级模式与级别不超过 n-1 的模式的水平或垂直组合。多级图案的生成算法是在动态编程的基础上构建的,不同大小的多级图案随着级序的增加而生成。选择正常大小是为了减少算法中不必要的计算。比较使用了三组基准实例和一组来自文献的随机生产实例。与文献中的精确算法相比,本文的结果相当,但计算时间更短。与文献中的启发式算法相比,本文的结果更好,计算时间也足够实际应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Graphical Models
Graphical Models 工程技术-计算机:软件工程
CiteScore
3.60
自引率
5.90%
发文量
15
审稿时长
47 days
期刊介绍: Graphical Models is recognized internationally as a highly rated, top tier journal and is focused on the creation, geometric processing, animation, and visualization of graphical models and on their applications in engineering, science, culture, and entertainment. GMOD provides its readers with thoroughly reviewed and carefully selected papers that disseminate exciting innovations, that teach rigorous theoretical foundations, that propose robust and efficient solutions, or that describe ambitious systems or applications in a variety of topics. We invite papers in five categories: research (contributions of novel theoretical or practical approaches or solutions), survey (opinionated views of the state-of-the-art and challenges in a specific topic), system (the architecture and implementation details of an innovative architecture for a complete system that supports model/animation design, acquisition, analysis, visualization?), application (description of a novel application of know techniques and evaluation of its impact), or lecture (an elegant and inspiring perspective on previously published results that clarifies them and teaches them in a new way). GMOD offers its authors an accelerated review, feedback from experts in the field, immediate online publication of accepted papers, no restriction on color and length (when justified by the content) in the online version, and a broad promotion of published papers. A prestigious group of editors selected from among the premier international researchers in their fields oversees the review process.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信