Superconvergence of unfitted Rannacher-Turek nonconforming element for elliptic interface problems

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Xiaoxiao He, Yanping Chen, Haifeng Ji, Haijin Wang
{"title":"Superconvergence of unfitted Rannacher-Turek nonconforming element for elliptic interface problems","authors":"Xiaoxiao He,&nbsp;Yanping Chen,&nbsp;Haifeng Ji,&nbsp;Haijin Wang","doi":"10.1016/j.apnum.2024.05.016","DOIUrl":null,"url":null,"abstract":"<div><p>The main aim of this paper is to study the superconvergence of nonconforming Rannacher-Turek finite element for elliptic interface problems under unfitted square meshes. In particular, we analyze its superclose property between the gradient of the numerical solution and the gradient of the interpolation of the exact solution. Moreover, we introduce a postprocessing interpolation operator which is applied to numerical solution, and we prove that the postprocessed gradient converges to the exact gradient with a superconvergent rate <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>h</mi></mrow><mrow><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><mo>)</mo></math></span>. Finally, numerical results coincide with our theoretical analysis, and they show that the error estimates do not depend on the ratio of the discontinuous coefficients.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927424001223","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

The main aim of this paper is to study the superconvergence of nonconforming Rannacher-Turek finite element for elliptic interface problems under unfitted square meshes. In particular, we analyze its superclose property between the gradient of the numerical solution and the gradient of the interpolation of the exact solution. Moreover, we introduce a postprocessing interpolation operator which is applied to numerical solution, and we prove that the postprocessed gradient converges to the exact gradient with a superconvergent rate O(h32). Finally, numerical results coincide with our theoretical analysis, and they show that the error estimates do not depend on the ratio of the discontinuous coefficients.

椭圆界面问题的非拟合兰纳赫尔-图雷克不符元素的超收敛性
本文的主要目的是研究非拟合 Rannacher-Turek 有限元在非拟合方网格下对椭圆界面问题的超收敛性。我们特别分析了数值解梯度与精确解插值梯度之间的超收敛性。此外,我们还引入了一个后处理插值算子,将其应用于数值解,并证明后处理梯度以 O(h32) 的超收敛率收敛于精确梯度。最后,数值结果与我们的理论分析相吻合,它们表明误差估计值并不依赖于不连续系数的比率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信