Normalized solutions for the nonlinear Schrödinger equation with potential and combined nonlinearities

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jin-Cai Kang, Chun-Lei Tang
{"title":"Normalized solutions for the nonlinear Schrödinger equation with potential and combined nonlinearities","authors":"Jin-Cai Kang,&nbsp;Chun-Lei Tang","doi":"10.1016/j.na.2024.113581","DOIUrl":null,"url":null,"abstract":"<div><p>In present paper, we study the following nonlinear Schrödinger equation with combined power nonlinearities <span><span><span><math><mrow><mo>−</mo><mi>Δ</mi><mi>u</mi><mo>+</mo><mi>V</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mi>u</mi><mo>+</mo><mi>λ</mi><mi>u</mi><mo>=</mo><msup><mrow><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mo>∗</mo></mrow></msup><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi><mo>+</mo><mi>μ</mi><msup><mrow><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow></mrow><mrow><mi>q</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi><mspace></mspace><mspace></mspace><mtext>in</mtext><mspace></mspace><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>,</mo><mspace></mspace><mi>N</mi><mo>≥</mo><mn>3</mn></mrow></math></span></span></span>having prescribed mass <span><span><span><math><mrow><msub><mrow><mo>∫</mo></mrow><mrow><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></mrow></msub><msup><mrow><mi>u</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>d</mi><mi>x</mi><mo>=</mo><msup><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>,</mo></mrow></math></span></span></span>where <span><math><mrow><mi>μ</mi><mo>,</mo><mi>a</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span>, <span><math><mrow><mi>q</mi><mo>∈</mo><mrow><mo>(</mo><mn>2</mn><mo>,</mo><msup><mrow><mn>2</mn></mrow><mrow><mo>∗</mo></mrow></msup><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><msup><mrow><mn>2</mn></mrow><mrow><mo>∗</mo></mrow></msup><mo>=</mo><mfrac><mrow><mn>2</mn><mi>N</mi></mrow><mrow><mi>N</mi><mo>−</mo><mn>2</mn></mrow></mfrac></mrow></math></span> is the critical Sobolev exponent, <span><math><mi>V</mi></math></span> is an external potential vanishing at infinity, and the parameter <span><math><mrow><mi>λ</mi><mo>∈</mo><mi>R</mi></mrow></math></span> appears as a Lagrange multiplier. Under some mild assumptions on <span><math><mi>V</mi></math></span>, combining the Pohožaev manifold, constrained minimization arguments and some analytical skills, we get the existence of normalized solutions for the problem with <span><math><mrow><mi>q</mi><mo>∈</mo><mrow><mo>(</mo><mn>2</mn><mo>,</mo><msup><mrow><mn>2</mn></mrow><mrow><mo>∗</mo></mrow></msup><mo>)</mo></mrow></mrow></math></span>. At the same time, the exponential decay property of the solutions is established, which is important for the instability analysis of the standing waves. Furthermore, we give a description of the ground state set and obtain the strong instability of the standing waves for <span><math><mrow><mi>q</mi><mo>∈</mo><mrow><mo>[</mo><mn>2</mn><mo>+</mo><mfrac><mrow><mn>4</mn></mrow><mrow><mi>N</mi></mrow></mfrac><mo>,</mo><msup><mrow><mn>2</mn></mrow><mrow><mo>∗</mo></mrow></msup><mo>)</mo></mrow></mrow></math></span>.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X24001007","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In present paper, we study the following nonlinear Schrödinger equation with combined power nonlinearities Δu+V(x)u+λu=|u|22u+μ|u|q2uinRN,N3having prescribed mass RNu2dx=a2,where μ,a>0, q(2,2), 2=2NN2 is the critical Sobolev exponent, V is an external potential vanishing at infinity, and the parameter λR appears as a Lagrange multiplier. Under some mild assumptions on V, combining the Pohožaev manifold, constrained minimization arguments and some analytical skills, we get the existence of normalized solutions for the problem with q(2,2). At the same time, the exponential decay property of the solutions is established, which is important for the instability analysis of the standing waves. Furthermore, we give a description of the ground state set and obtain the strong instability of the standing waves for q[2+4N,2).

具有势能和组合非线性的非线性薛定谔方程的归一化解
本文研究了下列具有组合幂非线性的非线性薛定谔方程-Δu+V(x)u+λu=|u|2∗-2u+μ|u|q-2uinRN,N≥3having prescribed mass ∫RNu2dx=a2,其中μ,a>;0,q∈(2,2∗),2∗=2NN-2 是临界索波列夫指数,V 是在无穷远处消失的外部势能,参数 λ∈R 作为拉格朗日乘数出现。根据对 V 的一些温和假设,结合波霍扎耶夫流形、约束最小化论证和一些分析技巧,我们得到了 q∈(2,2∗)问题的归一化解的存在。同时,建立了解的指数衰减特性,这对驻波的不稳定性分析非常重要。此外,我们还给出了基态集的描述,并得到了 q∈[2+4N,2∗) 时驻波的强不稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信