Mechanistic study of the retro-aza-Michael reaction in saccharothriolide L: identification of 2-amino-4-methylphenol as an effective protecting tool for the Michael acceptor
IF 2.1 4区 医学Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
{"title":"Mechanistic study of the retro-aza-Michael reaction in saccharothriolide L: identification of 2-amino-4-methylphenol as an effective protecting tool for the Michael acceptor","authors":"Shan Lu, Lingling Ren, Di Mao, Hideaki Kakeya","doi":"10.1038/s41429-024-00741-3","DOIUrl":null,"url":null,"abstract":"Saccharothriolide L (1), a derivative of saccharothriolides (STLs) produced by the rare actinomycete Saccharotrix sp. A1506, was synthesized through the precursor-directed in situ synthesis (PDSS) method. The structure of 1 was determined by 1D and 2D NMR and HR-ESI-MS data analyses. A comparison of the rate of the retro-aza-Michael reaction between saccharothriolide L (1) and saccharothriolide B (2) indicated that the 2-amino-4-methylphenol group in 1 might be an effective masking tool for highly reactive, bioactive α, β-unsaturated carbonyl compounds.","PeriodicalId":54884,"journal":{"name":"Journal of Antibiotics","volume":"77 8","pages":"544-547"},"PeriodicalIF":2.1000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Antibiotics","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41429-024-00741-3","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Saccharothriolide L (1), a derivative of saccharothriolides (STLs) produced by the rare actinomycete Saccharotrix sp. A1506, was synthesized through the precursor-directed in situ synthesis (PDSS) method. The structure of 1 was determined by 1D and 2D NMR and HR-ESI-MS data analyses. A comparison of the rate of the retro-aza-Michael reaction between saccharothriolide L (1) and saccharothriolide B (2) indicated that the 2-amino-4-methylphenol group in 1 might be an effective masking tool for highly reactive, bioactive α, β-unsaturated carbonyl compounds.
期刊介绍:
The Journal of Antibiotics seeks to promote research on antibiotics and related types of biologically active substances and publishes Articles, Review Articles, Brief Communication, Correspondence and other specially commissioned reports. The Journal of Antibiotics accepts papers on biochemical, chemical, microbiological and pharmacological studies. However, studies regarding human therapy do not fall under the journal’s scope. Contributions regarding recently discovered antibiotics and biologically active microbial products are particularly encouraged. Topics of particular interest within the journal''s scope include, but are not limited to, those listed below:
Discovery of new antibiotics and related types of biologically active substances
Production, isolation, characterization, structural elucidation, chemical synthesis and derivatization, biological activities, mechanisms of action, and structure-activity relationships of antibiotics and related types of biologically active substances
Biosynthesis, bioconversion, taxonomy and genetic studies on producing microorganisms, as well as improvement of production of antibiotics and related types of biologically active substances
Novel physical, chemical, biochemical, microbiological or pharmacological methods for detection, assay, determination, structural elucidation and evaluation of antibiotics and related types of biologically active substances
Newly found properties, mechanisms of action and resistance-development of antibiotics and related types of biologically active substances.