Invariant point message passing for protein side chain packing.

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
ACS Applied Electronic Materials Pub Date : 2024-10-01 Epub Date: 2024-05-24 DOI:10.1002/prot.26705
Nicholas Z Randolph, Brian Kuhlman
{"title":"Invariant point message passing for protein side chain packing.","authors":"Nicholas Z Randolph, Brian Kuhlman","doi":"10.1002/prot.26705","DOIUrl":null,"url":null,"abstract":"<p><p>Protein side chain packing (PSCP) is a fundamental problem in the field of protein engineering, as high-confidence and low-energy conformations of amino acid side chains are crucial for understanding (and designing) protein folding, protein-protein interactions, and protein-ligand interactions. Traditional PSCP methods (such as the Rosetta Packer) often rely on a library of discrete side chain conformations, or rotamers, and a forcefield to guide the structure to low-energy conformations. Recently, deep learning (DL) based methods (such as DLPacker, AttnPacker, and DiffPack) have demonstrated state-of-the-art predictions and speed in the PSCP task. Building off the success of geometric graph neural networks for protein modeling, we present the Protein Invariant Point Packer (PIPPack) which effectively processes local structural and sequence information to produce realistic, idealized side chain coordinates using <math><mrow><mi>χ</mi></mrow> </math> -angle distribution predictions and geometry-aware invariant point message passing (IPMP). On a test set of ∼1400 high-quality protein chains, PIPPack is highly competitive with other state-of-the-art PSCP methods in rotamer recovery and per-residue RMSD but is significantly faster.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11511640/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/prot.26705","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/24 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Protein side chain packing (PSCP) is a fundamental problem in the field of protein engineering, as high-confidence and low-energy conformations of amino acid side chains are crucial for understanding (and designing) protein folding, protein-protein interactions, and protein-ligand interactions. Traditional PSCP methods (such as the Rosetta Packer) often rely on a library of discrete side chain conformations, or rotamers, and a forcefield to guide the structure to low-energy conformations. Recently, deep learning (DL) based methods (such as DLPacker, AttnPacker, and DiffPack) have demonstrated state-of-the-art predictions and speed in the PSCP task. Building off the success of geometric graph neural networks for protein modeling, we present the Protein Invariant Point Packer (PIPPack) which effectively processes local structural and sequence information to produce realistic, idealized side chain coordinates using χ -angle distribution predictions and geometry-aware invariant point message passing (IPMP). On a test set of ∼1400 high-quality protein chains, PIPPack is highly competitive with other state-of-the-art PSCP methods in rotamer recovery and per-residue RMSD but is significantly faster.

蛋白质侧链包装的不变点信息传递
蛋白质侧链堆积(PSCP)是蛋白质工程领域的一个基本问题,因为氨基酸侧链的高置信度和低能构象对于理解(和设计)蛋白质折叠、蛋白质-蛋白质相互作用以及蛋白质-配体相互作用至关重要。传统的 PSCP 方法(如 Rosetta Packer)通常依赖于离散侧链构象库(或旋转体)和力场来引导结构的低能构象。最近,基于深度学习(DL)的方法(如 DLPacker、AttnPacker 和 DiffPack)在 PSCP 任务中展示了最先进的预测和速度。在几何图神经网络成功用于蛋白质建模的基础上,我们提出了蛋白质不变点打包器(PIPPack),它能有效处理局部结构和序列信息,利用χ $$ \chi $$ 角分布预测和几何感知不变点信息传递(IPMP)生成现实的理想化侧链坐标。在由 1400 条高质量蛋白质链组成的测试集上,PIPPack 与其他最先进的 PSCP 方法相比,在旋转体恢复和每残基 RMSD 方面具有很强的竞争力,而且速度明显更快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信