B. Koirala , A. Concas , A. Cincotti , Yi Sun , A. Hernández , M.L. Goodwin , L.B. Gladden , N. Lai
{"title":"Estimation of differential pathlength factor from NIRS measurement in skeletal muscle","authors":"B. Koirala , A. Concas , A. Cincotti , Yi Sun , A. Hernández , M.L. Goodwin , L.B. Gladden , N. Lai","doi":"10.1016/j.resp.2024.104283","DOIUrl":null,"url":null,"abstract":"<div><p>The utilization of continuous wave (CW) near-infrared spectroscopy (NIRS) device to measure non-invasively muscle oxygenation in healthy and disease states is limited by the uncertainties related to the differential path length factor (<span><math><mi>DPF</mi></math></span>). <span><math><mi>DPF</mi></math></span> value is required to quantify oxygenated and deoxygenated heme groups’ concentration changes from measurement of optical densities by NIRS. An integrated approach that combines animal and computational models of oxygen transport and utilization was used to estimate the <span><math><mi>DPF</mi></math></span> value <em>in situ</em>. The canine model of muscle oxidative metabolism allowed measurement of both venous oxygen content and tissue oxygenation by CW NIRS under different oxygen delivery conditions. The experimental data obtained from the animal model were integrated in a computational model of O<sub>2</sub> transport and utilization and combined with Beer-Lambert law to estimate <span><math><mi>DPF</mi></math></span> value in contracting skeletal muscle. A 2.1 value was found for <span><math><mi>DPF</mi></math></span> by fitting the mathematical model to the experimental data obtained in contracting muscle (T3) (Med.Sci.Sports.Exerc.48(10):2013–2020,2016). With the estimated value of <span><math><mi>DPF</mi></math></span>, model simulations well predicted the optical density measured by NIRS on the same animal model but with different blood flow, arterial oxygen contents and contraction rate (J.Appl.Physiol.108:1169–1176, 2010 and 112:9–19,2013) and demonstrated the robustness of the approach proposed in estimating <span><math><mi>DPF</mi></math></span> value. The approach used can overcome the semi-quantitative nature of the NIRS and estimate non-invasively <span><math><mi>DPF</mi></math></span> to obtain an accurate concentration change of oxygenated and deoxygenated hemo groups by CW NIRS measurements in contracting skeletal muscle under different oxygen delivery and contraction rate.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1569904824000764/pdfft?md5=98270b0a35e7743d357af86b35803e3e&pid=1-s2.0-S1569904824000764-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569904824000764","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The utilization of continuous wave (CW) near-infrared spectroscopy (NIRS) device to measure non-invasively muscle oxygenation in healthy and disease states is limited by the uncertainties related to the differential path length factor (). value is required to quantify oxygenated and deoxygenated heme groups’ concentration changes from measurement of optical densities by NIRS. An integrated approach that combines animal and computational models of oxygen transport and utilization was used to estimate the value in situ. The canine model of muscle oxidative metabolism allowed measurement of both venous oxygen content and tissue oxygenation by CW NIRS under different oxygen delivery conditions. The experimental data obtained from the animal model were integrated in a computational model of O2 transport and utilization and combined with Beer-Lambert law to estimate value in contracting skeletal muscle. A 2.1 value was found for by fitting the mathematical model to the experimental data obtained in contracting muscle (T3) (Med.Sci.Sports.Exerc.48(10):2013–2020,2016). With the estimated value of , model simulations well predicted the optical density measured by NIRS on the same animal model but with different blood flow, arterial oxygen contents and contraction rate (J.Appl.Physiol.108:1169–1176, 2010 and 112:9–19,2013) and demonstrated the robustness of the approach proposed in estimating value. The approach used can overcome the semi-quantitative nature of the NIRS and estimate non-invasively to obtain an accurate concentration change of oxygenated and deoxygenated hemo groups by CW NIRS measurements in contracting skeletal muscle under different oxygen delivery and contraction rate.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.