In Situ Transformation of an Amorphous Supramolecular Coating to a Hydrogen-Bonded Organic Framework Membrane to Trigger Selective Gas Permeation

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Caiyan Zhang, Dr. Zhikun Wang, Lu Qiao, Liting Yu, Jia Pang, Yang Feng, Dr. Wenmiao Chen, Dr. Lili Fan, Prof. Rongming Wang, Prof. Hailing Guo, Prof. Zixi Kang, Prof. Daofeng Sun
{"title":"In Situ Transformation of an Amorphous Supramolecular Coating to a Hydrogen-Bonded Organic Framework Membrane to Trigger Selective Gas Permeation","authors":"Caiyan Zhang,&nbsp;Dr. Zhikun Wang,&nbsp;Lu Qiao,&nbsp;Liting Yu,&nbsp;Jia Pang,&nbsp;Yang Feng,&nbsp;Dr. Wenmiao Chen,&nbsp;Dr. Lili Fan,&nbsp;Prof. Rongming Wang,&nbsp;Prof. Hailing Guo,&nbsp;Prof. Zixi Kang,&nbsp;Prof. Daofeng Sun","doi":"10.1002/anie.202407779","DOIUrl":null,"url":null,"abstract":"<p>We introduce a “solution-processing-transformation” strategy, deploying solvent vapor as scaffolds, to fabricate high-quality hydrogen-bonded organic framework (HOF) membranes. This strategy can overcome the mismatch in processing conditions and crystal growth thermodynamics faced during the facile solution processing of the membrane. The procedure includes the vapor-trigged in situ transformation of dense amorphous supramolecules to crystalline HOF-16, with HOF-11 as the transient state. The mechanism involves a vapor-activated dissolution-precipitation equilibrium shifting and hydrogen bonding-guided molecule rearrangement, elucidated through combined experimental and theoretical analysis. Upon removal of the molecular scaffolds, the resulting HOF-16 membranes showcase significant improvement in hydrogen separation performance over their amorphous counterparts and previously reported HOF membranes. The method's broad applicability is evidenced by successfully extending it to other substrates and HOF structures. This study provides a fundamental understanding of guest-induced ordered supramolecular assembly and paves the way for the advanced manufacture of high-performance HOF membranes for gas separation processes.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"63 42","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202407779","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce a “solution-processing-transformation” strategy, deploying solvent vapor as scaffolds, to fabricate high-quality hydrogen-bonded organic framework (HOF) membranes. This strategy can overcome the mismatch in processing conditions and crystal growth thermodynamics faced during the facile solution processing of the membrane. The procedure includes the vapor-trigged in situ transformation of dense amorphous supramolecules to crystalline HOF-16, with HOF-11 as the transient state. The mechanism involves a vapor-activated dissolution-precipitation equilibrium shifting and hydrogen bonding-guided molecule rearrangement, elucidated through combined experimental and theoretical analysis. Upon removal of the molecular scaffolds, the resulting HOF-16 membranes showcase significant improvement in hydrogen separation performance over their amorphous counterparts and previously reported HOF membranes. The method's broad applicability is evidenced by successfully extending it to other substrates and HOF structures. This study provides a fundamental understanding of guest-induced ordered supramolecular assembly and paves the way for the advanced manufacture of high-performance HOF membranes for gas separation processes.

将无定形超分子涂层原位转化为氢键有机框架膜,以触发选择性气体渗透。
我们引入了一种 "溶液加工-转化 "策略,利用溶剂蒸汽作为支架,制造出高质量的氢键有机框架(HOF)膜。这种策略可以克服在膜的简易溶液加工过程中所面临的加工条件和晶体生长热力学的不匹配问题。该过程包括将致密的无定形超分子原位转化为结晶 HOF-16,并以 HOF-11 作为瞬态。其机理包括气动溶解-沉淀平衡转换和氢键引导的分子重排,并通过实验和理论分析加以阐明。去除分子支架后,生成的 HOF-16 膜与无定形膜和之前报道的 HOF 膜相比,氢气分离性能显著提高。该方法成功地扩展到了其他基质和 HOF 结构,从而证明了其广泛的适用性。这项研究提供了对客体诱导有序超分子组装的基本认识,并为气体分离过程中高性能 HOF 膜的先进制造铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信