Filling data gaps in long-term solar UV monitoring by statistical imputation methods.

IF 2.7 3区 化学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Photochemical & Photobiological Sciences Pub Date : 2024-07-01 Epub Date: 2024-05-24 DOI:10.1007/s43630-024-00593-8
Felix Heinzl, Sebastian Lorenz, Peter Scholz-Kreisel, Daniela Weiskopf
{"title":"Filling data gaps in long-term solar UV monitoring by statistical imputation methods.","authors":"Felix Heinzl, Sebastian Lorenz, Peter Scholz-Kreisel, Daniela Weiskopf","doi":"10.1007/s43630-024-00593-8","DOIUrl":null,"url":null,"abstract":"<p><p>Knowledge of long-term time trends of solar ultraviolet (UV) radiation on ground level is of high scientific interest. For this purpose, precise measurements over a long time are necessary. One of the challenges solar UV monitoring faces is the permanent and gap-free data collection over several decades. Data gaps hamper the formation and comparison of monthly or annual means, and, in the worst case, lead to incorrect conclusions in further data evaluation and trend analysis of UV data. For estimating data to fill gaps in long-term UV data series (daily radiant exposure and highest daily irradiance), we developed three statistical imputation methods: a model-based imputation, considering actual local solar radiation conditions using predictors correlated to the local UV values in an empirical model; an average-based imputation based on a statistical approach of averaging available local UV measurement data without predictors; and a mixture of these two imputation methods. A detailed validation demonstrates the superiority of the model-based imputation method. The combined method can be considered the best one in practice. Furthermore, it has been shown that the model-based imputation method can be used as an useful tool to identify systematic errors at and between calibration steps in long-term erythemal UV data series.</p>","PeriodicalId":98,"journal":{"name":"Photochemical & Photobiological Sciences","volume":" ","pages":"1265-1278"},"PeriodicalIF":2.7000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photochemical & Photobiological Sciences","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s43630-024-00593-8","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/24 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Knowledge of long-term time trends of solar ultraviolet (UV) radiation on ground level is of high scientific interest. For this purpose, precise measurements over a long time are necessary. One of the challenges solar UV monitoring faces is the permanent and gap-free data collection over several decades. Data gaps hamper the formation and comparison of monthly or annual means, and, in the worst case, lead to incorrect conclusions in further data evaluation and trend analysis of UV data. For estimating data to fill gaps in long-term UV data series (daily radiant exposure and highest daily irradiance), we developed three statistical imputation methods: a model-based imputation, considering actual local solar radiation conditions using predictors correlated to the local UV values in an empirical model; an average-based imputation based on a statistical approach of averaging available local UV measurement data without predictors; and a mixture of these two imputation methods. A detailed validation demonstrates the superiority of the model-based imputation method. The combined method can be considered the best one in practice. Furthermore, it has been shown that the model-based imputation method can be used as an useful tool to identify systematic errors at and between calibration steps in long-term erythemal UV data series.

Abstract Image

通过统计估算方法填补长期太阳紫外线监测的数据缺口。
了解地面太阳紫外线(UV)辐射的长期时间趋势具有很高的科学价值。为此,有必要进行长时间的精确测量。太阳紫外线监测所面临的挑战之一是在几十年的时间里长期无间隙地收集数据。数据缺口会妨碍月度或年度平均值的形成和比较,最糟糕的情况是会导致在进一步的数据评估和紫外线数据趋势分析中得出错误的结论。为了估算数据以填补长期紫外线数据序列(日辐射照射量和日最高辐照度)中的空白,我们开发了三种统计估算方法:基于模型的估算方法,即在经验模型中使用与当地紫外线值相关的预测因子来考虑当地的实际太阳辐射条件;基于平均值的估算方法,即采用统计方法对不含预测因子的现有当地紫外线测量数据进行平均;以及这两种估算方法的混合方法。详细的验证证明了基于模型的估算方法的优越性。在实践中,综合方法可被视为最佳方法。此外,研究还表明,基于模型的估算方法可作为一种有用的工具,用于识别长期红斑紫外线数据系列中校准步骤和校准步骤之间的系统误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Photochemical & Photobiological Sciences
Photochemical & Photobiological Sciences 生物-生化与分子生物学
CiteScore
5.60
自引率
6.50%
发文量
201
审稿时长
2.3 months
期刊介绍: A society-owned journal publishing high quality research on all aspects of photochemistry and photobiology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信