An Improved Modulation Strategy for Single-Phase Three-Level Neutral-Point-Clamped Converter in Critical Conduction Mode

IF 5.7 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Ning Li;Yujie Cao;Xiaokang Liu;Yan Zhang;Ruotong Wang;Lin Jiang;Xiao-Ping Zhang
{"title":"An Improved Modulation Strategy for Single-Phase Three-Level Neutral-Point-Clamped Converter in Critical Conduction Mode","authors":"Ning Li;Yujie Cao;Xiaokang Liu;Yan Zhang;Ruotong Wang;Lin Jiang;Xiao-Ping Zhang","doi":"10.35833/MPCE.2023.000210","DOIUrl":null,"url":null,"abstract":"Two-level totem-pole power factor correction (PFC) converters in critical conduction mode (CRM) suffer from the wide regulation range of switching frequency. Besides, in high-frequency applications, the number of switching times increases, resulting in significant switching losses. To solve these issues, this paper proposes an improved modulation strategy for the single-phase three-level neutral-point-clamped (NPC) converter in CRM with PFC. By optimizing the discharging strategy and switching state sequence, the switching frequency and its variation range have been efficiently reduced. The detailed performance analysis is also presented regarding the switching frequency, the average switching times, and the effect of voltage gain. A 2 kW prototype is built to verify the effectiveness of the proposed modulation strategy and analysis results. Compared with the totem-pole PFC converter, the switching frequency regulation range of the three-level PFC converter is reduced by 36%, and the average switching times is reduced by 45%. The experimental result also shows a 1.2% higher efficiency for the three-level PFC converter in the full load range.","PeriodicalId":51326,"journal":{"name":"Journal of Modern Power Systems and Clean Energy","volume":"12 3","pages":"981-990"},"PeriodicalIF":5.7000,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10422877","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Modern Power Systems and Clean Energy","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10422877/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Two-level totem-pole power factor correction (PFC) converters in critical conduction mode (CRM) suffer from the wide regulation range of switching frequency. Besides, in high-frequency applications, the number of switching times increases, resulting in significant switching losses. To solve these issues, this paper proposes an improved modulation strategy for the single-phase three-level neutral-point-clamped (NPC) converter in CRM with PFC. By optimizing the discharging strategy and switching state sequence, the switching frequency and its variation range have been efficiently reduced. The detailed performance analysis is also presented regarding the switching frequency, the average switching times, and the effect of voltage gain. A 2 kW prototype is built to verify the effectiveness of the proposed modulation strategy and analysis results. Compared with the totem-pole PFC converter, the switching frequency regulation range of the three-level PFC converter is reduced by 36%, and the average switching times is reduced by 45%. The experimental result also shows a 1.2% higher efficiency for the three-level PFC converter in the full load range.
临界传导模式下单相三电平中性点钳位转换器的改进调制策略
临界导通模式(CRM)下的两级图腾极功率因数校正(PFC)转换器存在开关频率调节范围过宽的问题。此外,在高频应用中,开关次数会增加,从而导致显著的开关损耗。为解决这些问题,本文提出了一种改进的调制策略,适用于具有 PFC 功能的单相三电平中性点闭合(NPC)转换器。通过优化放电策略和开关状态序列,有效降低了开关频率及其变化范围。此外,还对开关频率、平均开关时间和电压增益的影响进行了详细的性能分析。为了验证所提出的调制策略和分析结果的有效性,我们制作了一个 2 千瓦的原型。与图腾柱 PFC 转换器相比,三电平 PFC 转换器的开关频率调节范围减少了 36%,平均开关时间减少了 45%。实验结果还显示,三电平 PFC 转换器在满负荷范围内的效率提高了 1.2%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Modern Power Systems and Clean Energy
Journal of Modern Power Systems and Clean Energy ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
12.30
自引率
14.30%
发文量
97
审稿时长
13 weeks
期刊介绍: Journal of Modern Power Systems and Clean Energy (MPCE), commencing from June, 2013, is a newly established, peer-reviewed and quarterly published journal in English. It is the first international power engineering journal originated in mainland China. MPCE publishes original papers, short letters and review articles in the field of modern power systems with focus on smart grid technology and renewable energy integration, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信