Lutecia Servius, Davide Pigoli, Joseph Ng, Franca Fraternali
{"title":"Predicting class switch recombination in B-cells from antibody repertoire data","authors":"Lutecia Servius, Davide Pigoli, Joseph Ng, Franca Fraternali","doi":"10.1002/bimj.202300171","DOIUrl":null,"url":null,"abstract":"<p>Statistical and machine learning methods have proved useful in many areas of immunology. In this paper, we address for the first time the problem of predicting the occurrence of class switch recombination (CSR) in B-cells, a problem of interest in understanding antibody response under immunological challenges. We propose a framework to analyze antibody repertoire data, based on clonal (CG) group representation in a way that allows us to predict CSR events using CG level features as input. We assess and compare the performance of several predicting models (logistic regression, LASSO logistic regression, random forest, and support vector machine) in carrying out this task. The proposed approach can obtain an unweighted average recall of <span></span><math>\n <semantics>\n <mrow>\n <mn>71</mn>\n <mo>%</mo>\n </mrow>\n <annotation>$71\\%$</annotation>\n </semantics></math> with models based on variable region descriptors and measures of CG diversity during an immune challenge and, most notably, before an immune challenge.</p>","PeriodicalId":55360,"journal":{"name":"Biometrical Journal","volume":"66 4","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bimj.202300171","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrical Journal","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bimj.202300171","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Statistical and machine learning methods have proved useful in many areas of immunology. In this paper, we address for the first time the problem of predicting the occurrence of class switch recombination (CSR) in B-cells, a problem of interest in understanding antibody response under immunological challenges. We propose a framework to analyze antibody repertoire data, based on clonal (CG) group representation in a way that allows us to predict CSR events using CG level features as input. We assess and compare the performance of several predicting models (logistic regression, LASSO logistic regression, random forest, and support vector machine) in carrying out this task. The proposed approach can obtain an unweighted average recall of with models based on variable region descriptors and measures of CG diversity during an immune challenge and, most notably, before an immune challenge.
期刊介绍:
Biometrical Journal publishes papers on statistical methods and their applications in life sciences including medicine, environmental sciences and agriculture. Methodological developments should be motivated by an interesting and relevant problem from these areas. Ideally the manuscript should include a description of the problem and a section detailing the application of the new methodology to the problem. Case studies, review articles and letters to the editors are also welcome. Papers containing only extensive mathematical theory are not suitable for publication in Biometrical Journal.