Complete spatially resolved gene expression is not necessary for identifying spatial domains.

IF 11.1 Q1 CELL BIOLOGY
Cell genomics Pub Date : 2024-06-12 Epub Date: 2024-05-22 DOI:10.1016/j.xgen.2024.100565
Senlin Lin, Yan Cui, Fangyuan Zhao, Zhidong Yang, Jiangning Song, Jianhua Yao, Yu Zhao, Bin-Zhi Qian, Yi Zhao, Zhiyuan Yuan
{"title":"Complete spatially resolved gene expression is not necessary for identifying spatial domains.","authors":"Senlin Lin, Yan Cui, Fangyuan Zhao, Zhidong Yang, Jiangning Song, Jianhua Yao, Yu Zhao, Bin-Zhi Qian, Yi Zhao, Zhiyuan Yuan","doi":"10.1016/j.xgen.2024.100565","DOIUrl":null,"url":null,"abstract":"<p><p>Spatially resolved transcriptomics (SRT) technologies have revolutionized the study of tissue organization. We introduce a graph convolutional network with an attention and positive emphasis mechanism, termed BINARY, relying exclusively on binarized SRT data to accurately delineate spatial domains. BINARY outperforms existing methods across various SRT data types while using significantly less input information. Our study suggests that precise gene expression quantification may not always be essential, inspiring further exploration of the broader applications of spatially resolved binarized gene expression data.</p>","PeriodicalId":72539,"journal":{"name":"Cell genomics","volume":" ","pages":"100565"},"PeriodicalIF":11.1000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11228956/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell genomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.xgen.2024.100565","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/22 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Spatially resolved transcriptomics (SRT) technologies have revolutionized the study of tissue organization. We introduce a graph convolutional network with an attention and positive emphasis mechanism, termed BINARY, relying exclusively on binarized SRT data to accurately delineate spatial domains. BINARY outperforms existing methods across various SRT data types while using significantly less input information. Our study suggests that precise gene expression quantification may not always be essential, inspiring further exploration of the broader applications of spatially resolved binarized gene expression data.

完整的空间解析基因表达并不是识别空间域的必要条件。
空间分辨转录组学(SRT)技术彻底改变了对组织结构的研究。我们介绍了一种具有注意力和正向强调机制的图卷积网络,称为 "BINARY",它完全依靠二值化的 SRT 数据来精确划分空间域。在各种 SRT 数据类型中,BINARY 的表现优于现有的方法,同时使用的输入信息也少得多。我们的研究表明,精确的基因表达量化并不总是必要的,这激励我们进一步探索空间分辨二值化基因表达数据的更广泛应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信