{"title":"The crosstalk between miRNAs and signaling pathways in human cancers: Potential therapeutic implications.","authors":"Ritu Shekhar, Sujata Kumari, Satyam Vergish, Prajna Tripathi","doi":"10.1016/bs.ircmb.2023.12.001","DOIUrl":null,"url":null,"abstract":"<p><p>MicroRNAs (miRNAs) are increasingly recognized as central players in the regulation of eukaryotic physiological processes. These small double stranded RNA molecules have emerged as pivotal regulators in the intricate network of cellular signaling pathways, playing significant roles in the development and progression of human cancers. The central theme in miRNA-mediated regulation of signaling pathways involves their ability to target and modulate the expression of pathway components. Aberrant expression of miRNAs can either promote or suppress key signaling events, influencing critical cellular processes such as proliferation, apoptosis, angiogenesis, and metastasis. For example, oncogenic miRNAs often promote cancer progression by targeting tumor suppressors or negative regulators of signaling pathways, thereby enhancing pathway activity. Conversely, tumor-suppressive miRNAs frequently inhibit oncogenic signaling by targeting key components within these pathways. This complex regulatory crosstalk underscores the significance of miRNAs as central players in shaping the signaling landscape of cancer cells. Furthermore, the therapeutic implications of targeting miRNAs in cancer are substantial. miRNAs can be manipulated to restore normal signaling pathway activity, offering a potential avenue for precision medicine. The development of miRNA-based therapeutics, including synthetic miRNA mimics and miRNA inhibitors, has shown promise in preclinical and clinical studies. These strategies aim to either enhance the activity of tumor-suppressive miRNAs or inhibit the function of oncogenic miRNAs, thereby restoring balanced signaling and impeding cancer progression. In conclusion, the crosstalk between miRNAs and signaling pathways in human cancers is a dynamic and influential aspect of cancer biology. Understanding this interplay provides valuable insights into cancer development and progression. Harnessing the therapeutic potential of miRNAs as regulators of signaling pathways opens up exciting opportunities for the development of innovative cancer treatments with the potential to improve patient outcomes. In this chapter, we provide an overview of the crosstalk between miRNAs and signaling pathways in the context of cancer and highlight the potential therapeutic implications of targeting this regulatory interplay.</p>","PeriodicalId":14422,"journal":{"name":"International review of cell and molecular biology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International review of cell and molecular biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.ircmb.2023.12.001","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/23 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
MicroRNAs (miRNAs) are increasingly recognized as central players in the regulation of eukaryotic physiological processes. These small double stranded RNA molecules have emerged as pivotal regulators in the intricate network of cellular signaling pathways, playing significant roles in the development and progression of human cancers. The central theme in miRNA-mediated regulation of signaling pathways involves their ability to target and modulate the expression of pathway components. Aberrant expression of miRNAs can either promote or suppress key signaling events, influencing critical cellular processes such as proliferation, apoptosis, angiogenesis, and metastasis. For example, oncogenic miRNAs often promote cancer progression by targeting tumor suppressors or negative regulators of signaling pathways, thereby enhancing pathway activity. Conversely, tumor-suppressive miRNAs frequently inhibit oncogenic signaling by targeting key components within these pathways. This complex regulatory crosstalk underscores the significance of miRNAs as central players in shaping the signaling landscape of cancer cells. Furthermore, the therapeutic implications of targeting miRNAs in cancer are substantial. miRNAs can be manipulated to restore normal signaling pathway activity, offering a potential avenue for precision medicine. The development of miRNA-based therapeutics, including synthetic miRNA mimics and miRNA inhibitors, has shown promise in preclinical and clinical studies. These strategies aim to either enhance the activity of tumor-suppressive miRNAs or inhibit the function of oncogenic miRNAs, thereby restoring balanced signaling and impeding cancer progression. In conclusion, the crosstalk between miRNAs and signaling pathways in human cancers is a dynamic and influential aspect of cancer biology. Understanding this interplay provides valuable insights into cancer development and progression. Harnessing the therapeutic potential of miRNAs as regulators of signaling pathways opens up exciting opportunities for the development of innovative cancer treatments with the potential to improve patient outcomes. In this chapter, we provide an overview of the crosstalk between miRNAs and signaling pathways in the context of cancer and highlight the potential therapeutic implications of targeting this regulatory interplay.
期刊介绍:
International Review of Cell and Molecular Biology presents current advances and comprehensive reviews in cell biology-both plant and animal. Articles address structure and control of gene expression, nucleocytoplasmic interactions, control of cell development and differentiation, and cell transformation and growth. Authored by some of the foremost scientists in the field, each volume provides up-to-date information and directions for future research.