{"title":"Functional Morphologic Changes of the Heel Fat Pad and Plantar Fascia in Patients With Heel Pain During Weightbearing and Nonweightbearing.","authors":"Toshihiro Maemichi, Masatomo Matsumoto, Toshiharu Tsutsui, Shota Ichikawa, Takumi Okunuki, Hirofumi Tanaka, Tsukasa Kumai","doi":"10.1177/24730114241247824","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>This study aimed to investigate the thickness changes of the heel fat pad and the plantar fascia associated with loading and unloading in healthy individuals and patients with heel pain and reveal the differences between them.</p><p><strong>Methods: </strong>The study included adult male participants with (n = 9) and without (n = 26) heel pain. The participants placed their right foot on an evaluation apparatus with a polymethylpentene resin board (PMP), while their left foot was positioned on a weighing scale used to adjust the loading weight. The heel fat pad was differentiated into superficial Microchamber and deep Macrochamber layers. These layers and plantar fascia thickness were measured using an ultrasonographic imaging device at loading phase ranging from 0% to 100% of their body weight and unloading phase from 100% to 0%. Additionally, the study examined the thickness change ratios of the superficial and deep heel fat pad layers when the load increased from 0% (unload) to 100% (full load).</p><p><strong>Results: </strong>In healthy individuals and patients with heel pain, no significant thickness changes were observed in the Microchamber layer of the heel fat pad or the plantar fascia during loading and unloading evaluations. However, significant thickness changes were observed in the Macrochamber layer of the heel fat pad, and the pattern of change differed between the loading and unloading phases. Additionally, patients with heel pain showed differences in the thickness change and thickness change ratios of the microchamber and macrochamber layers of the heel fat pad during both loading and unloading phases. The thickness of the plantar fascia did not show significant differences between both groups.</p><p><strong>Conclusion: </strong>Compared with healthy individuals, in our relatively small study, patients with heel pain had greater deep fat pad compression in loading and less recovery after load removal. This finding suggests that these patients have different intrinsic fat pad function and related morphology than those without heel pain.</p><p><strong>Level of evidence: </strong>Level III, retrospective cohort study.</p>","PeriodicalId":12429,"journal":{"name":"Foot & Ankle Orthopaedics","volume":"9 2","pages":"24730114241247824"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11113045/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foot & Ankle Orthopaedics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/24730114241247824","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Background: This study aimed to investigate the thickness changes of the heel fat pad and the plantar fascia associated with loading and unloading in healthy individuals and patients with heel pain and reveal the differences between them.
Methods: The study included adult male participants with (n = 9) and without (n = 26) heel pain. The participants placed their right foot on an evaluation apparatus with a polymethylpentene resin board (PMP), while their left foot was positioned on a weighing scale used to adjust the loading weight. The heel fat pad was differentiated into superficial Microchamber and deep Macrochamber layers. These layers and plantar fascia thickness were measured using an ultrasonographic imaging device at loading phase ranging from 0% to 100% of their body weight and unloading phase from 100% to 0%. Additionally, the study examined the thickness change ratios of the superficial and deep heel fat pad layers when the load increased from 0% (unload) to 100% (full load).
Results: In healthy individuals and patients with heel pain, no significant thickness changes were observed in the Microchamber layer of the heel fat pad or the plantar fascia during loading and unloading evaluations. However, significant thickness changes were observed in the Macrochamber layer of the heel fat pad, and the pattern of change differed between the loading and unloading phases. Additionally, patients with heel pain showed differences in the thickness change and thickness change ratios of the microchamber and macrochamber layers of the heel fat pad during both loading and unloading phases. The thickness of the plantar fascia did not show significant differences between both groups.
Conclusion: Compared with healthy individuals, in our relatively small study, patients with heel pain had greater deep fat pad compression in loading and less recovery after load removal. This finding suggests that these patients have different intrinsic fat pad function and related morphology than those without heel pain.
Level of evidence: Level III, retrospective cohort study.