The relationship between cellular protein content and selenium accumulation in freshwater microalgae.

IF 3 4区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES
Courtney Bogstie, Melanie Gallant, James R Elphick, Christopher Kennedy
{"title":"The relationship between cellular protein content and selenium accumulation in freshwater microalgae.","authors":"Courtney Bogstie, Melanie Gallant, James R Elphick, Christopher Kennedy","doi":"10.1002/ieam.4946","DOIUrl":null,"url":null,"abstract":"<p><p>Variability in the bioconcentration of selenium (Se) by primary producers at the base of the food web results in uncertainty in predictions of bioaccumulation and ecological risk to higher trophic level organisms. Water chemistry, speciation of Se, and periphyton community composition have all been suggested as factors that contribute to variability in bioconcentration by primary producers; however, the role of physiological composition of periphyton species in influencing the bioconcentration of Se has not been previously evaluated. To determine if a relationship exists between algal protein content and Se accumulation, Parachlorella kessleri, Chlorella vulgaris, and Raphidocelis subcapitata were exposed to Se (as selenate) and analyzed for total protein and tissue Se content in the exponential and stationary growth phases. Protein content and Se accumulation in R. subcapitata in the stationary phase were also measured under two light intensities. No relationship between cellular protein content and Se accumulation was found for algae in the exponential phase; however, a strong relationship was found in the stationary phase among species and for R. subcapitata under differing light intensities. Absolute Se accumulations by P. kessleri, C. vulgaris, and R. subcapitata in the stationary phase were statistically different; however, the concentrations of Se in protein were similar across species. These results suggest that cellular protein content in microalgae influences Se bioconcentration and that algal protein content may improve Se bioaccumulation modeling in food webs. Integr Environ Assess Manag 2024;00:1-10. © 2024 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).</p>","PeriodicalId":13557,"journal":{"name":"Integrated Environmental Assessment and Management","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrated Environmental Assessment and Management","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1002/ieam.4946","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Variability in the bioconcentration of selenium (Se) by primary producers at the base of the food web results in uncertainty in predictions of bioaccumulation and ecological risk to higher trophic level organisms. Water chemistry, speciation of Se, and periphyton community composition have all been suggested as factors that contribute to variability in bioconcentration by primary producers; however, the role of physiological composition of periphyton species in influencing the bioconcentration of Se has not been previously evaluated. To determine if a relationship exists between algal protein content and Se accumulation, Parachlorella kessleri, Chlorella vulgaris, and Raphidocelis subcapitata were exposed to Se (as selenate) and analyzed for total protein and tissue Se content in the exponential and stationary growth phases. Protein content and Se accumulation in R. subcapitata in the stationary phase were also measured under two light intensities. No relationship between cellular protein content and Se accumulation was found for algae in the exponential phase; however, a strong relationship was found in the stationary phase among species and for R. subcapitata under differing light intensities. Absolute Se accumulations by P. kessleri, C. vulgaris, and R. subcapitata in the stationary phase were statistically different; however, the concentrations of Se in protein were similar across species. These results suggest that cellular protein content in microalgae influences Se bioconcentration and that algal protein content may improve Se bioaccumulation modeling in food webs. Integr Environ Assess Manag 2024;00:1-10. © 2024 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).

淡水微藻细胞蛋白质含量与硒积累的关系
食物网底层初级生产者对硒(Se)的生物富集能力存在差异,这导致对高营养级生物的生物富集和生态风险的预测存在不确定性。水化学、硒的种类和浮游生物群落组成都被认为是导致初级生产者生物富集变化的因素;然而,此前尚未评估过浮游生物物种的生理组成在影响硒的生物富集方面所起的作用。为了确定藻类蛋白质含量与硒积累之间是否存在关系,将 Parachlorella kessleri、Chlorella vulgaris 和 Raphidocelis subcapitata 暴露于硒(硒酸盐),并分析其在指数生长期和静止生长期的总蛋白质和组织硒含量。此外,还在两种光照强度下测量了静止期 R. subcapitata 的蛋白质含量和 Se 积累。在指数生长期,藻类的细胞蛋白质含量与硒积累之间没有关系;但在静止生长期,不同物种之间以及不同光照强度下,亚盘藻的细胞蛋白质含量与硒积累之间存在密切关系。在静止期,P. kessleri、C. vulgaris 和 R. subcapitata 的硒绝对积累量存在统计学差异;但不同物种蛋白质中的硒浓度相似。这些结果表明,微藻细胞蛋白质含量会影响硒的生物浓缩,藻类蛋白质含量可改善食物网中硒的生物累积模型。Integr Environ Assess Manag 2024;00:1-10。© 2024 作者。综合环境评估与管理》由 Wiley Periodicals LLC 代表环境毒理学与化学学会 (SETAC) 出版。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Integrated Environmental Assessment and Management
Integrated Environmental Assessment and Management ENVIRONMENTAL SCIENCESTOXICOLOGY&nbs-TOXICOLOGY
CiteScore
5.90
自引率
6.50%
发文量
156
期刊介绍: Integrated Environmental Assessment and Management (IEAM) publishes the science underpinning environmental decision making and problem solving. Papers submitted to IEAM must link science and technical innovations to vexing regional or global environmental issues in one or more of the following core areas: Science-informed regulation, policy, and decision making Health and ecological risk and impact assessment Restoration and management of damaged ecosystems Sustaining ecosystems Managing large-scale environmental change Papers published in these broad fields of study are connected by an array of interdisciplinary engineering, management, and scientific themes, which collectively reflect the interconnectedness of the scientific, social, and environmental challenges facing our modern global society: Methods for environmental quality assessment; forecasting across a number of ecosystem uses and challenges (systems-based, cost-benefit, ecosystem services, etc.); measuring or predicting ecosystem change and adaptation Approaches that connect policy and management tools; harmonize national and international environmental regulation; merge human well-being with ecological management; develop and sustain the function of ecosystems; conceptualize, model and apply concepts of spatial and regional sustainability Assessment and management frameworks that incorporate conservation, life cycle, restoration, and sustainability; considerations for climate-induced adaptation, change and consequences, and vulnerability Environmental management applications using risk-based approaches; considerations for protecting and fostering biodiversity, as well as enhancement or protection of ecosystem services and resiliency.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信