{"title":"Characterization of organic fouling on thermal bubble-driven micro-pumps.","authors":"Brandon Hayes, Cillian Murphy, Janeth Marquez Rubio, Daimean Solis, Kaushik Jayaram, Robert MacCurdy","doi":"10.1080/08927014.2024.2353034","DOIUrl":null,"url":null,"abstract":"<p><p>Thermal bubble-driven micro-pumps are an upcoming micro-actuator technology that can be directly integrated into micro/mesofluidic channels, have no moving parts, and leverage existing mass production fabrication approaches. These micro-pumps consist of a high-power micro-resistor that boils fluid in microseconds to create a high-pressure vapor bubble which performs mechanical work. As such, these micro-pumps hold great promise for micro/mesofluidic systems such as lab-on-a-chip technologies. However, to date, no current work has studied the interaction of these micro-pumps with biofluids such as blood and protein-rich fluids. In this study, the effects of organic fouling due to egg albumin and bovine whole blood are characterized using stroboscopic high-speed imaging and a custom deep learning neural network based on transfer learning of RESNET-18. It was found that the growth of a fouling film inhibited vapor bubble formation. A new metric to quantify the extent of fouling was proposed using the decrease in vapor bubble area as a function of the number of micro-pump firing events. Fouling due to egg albumin and bovine whole blood was found to significantly degrade pump performance as well as the lifetime of thermal bubble-driven micro-pumps to less than 10<sup>4</sup> firings, which may necessitate the use of protective thin film coatings to prevent the buildup of a fouling layer.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/08927014.2024.2353034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/24 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Thermal bubble-driven micro-pumps are an upcoming micro-actuator technology that can be directly integrated into micro/mesofluidic channels, have no moving parts, and leverage existing mass production fabrication approaches. These micro-pumps consist of a high-power micro-resistor that boils fluid in microseconds to create a high-pressure vapor bubble which performs mechanical work. As such, these micro-pumps hold great promise for micro/mesofluidic systems such as lab-on-a-chip technologies. However, to date, no current work has studied the interaction of these micro-pumps with biofluids such as blood and protein-rich fluids. In this study, the effects of organic fouling due to egg albumin and bovine whole blood are characterized using stroboscopic high-speed imaging and a custom deep learning neural network based on transfer learning of RESNET-18. It was found that the growth of a fouling film inhibited vapor bubble formation. A new metric to quantify the extent of fouling was proposed using the decrease in vapor bubble area as a function of the number of micro-pump firing events. Fouling due to egg albumin and bovine whole blood was found to significantly degrade pump performance as well as the lifetime of thermal bubble-driven micro-pumps to less than 104 firings, which may necessitate the use of protective thin film coatings to prevent the buildup of a fouling layer.